Integration of Functions Ranging in Complex Riesz Space and Some Applications in Harmonic Analysis
Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 12-26

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of Henstock–Kurzweil integral is generalized to the case of functions ranging in complex Riesz space $R$ and defined on any zero-dimensional compact Abelian group. The constructed integral is used to solve the problem of recovering the $R$-valued coefficients of series in systems of characters of these groups by using generalized Fourier formulas.
Keywords: complex Riesz space, zero-dimensional compact Abelian group, group characters, Henstock–Kurzweil integral.
@article{MZM_2015_98_1_a1,
     author = {A. Bokkuto and V. A. Skvortsov and F. Tulone},
     title = {Integration of {Functions} {Ranging} in {Complex} {Riesz} {Space} and {Some} {Applications} in {Harmonic} {Analysis}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {12--26},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a1/}
}
TY  - JOUR
AU  - A. Bokkuto
AU  - V. A. Skvortsov
AU  - F. Tulone
TI  - Integration of Functions Ranging in Complex Riesz Space and Some Applications in Harmonic Analysis
JO  - Matematičeskie zametki
PY  - 2015
SP  - 12
EP  - 26
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a1/
LA  - ru
ID  - MZM_2015_98_1_a1
ER  - 
%0 Journal Article
%A A. Bokkuto
%A V. A. Skvortsov
%A F. Tulone
%T Integration of Functions Ranging in Complex Riesz Space and Some Applications in Harmonic Analysis
%J Matematičeskie zametki
%D 2015
%P 12-26
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a1/
%G ru
%F MZM_2015_98_1_a1
A. Bokkuto; V. A. Skvortsov; F. Tulone. Integration of Functions Ranging in Complex Riesz Space and Some Applications in Harmonic Analysis. Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 12-26. http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a1/