Quality of Approximation by Fourier Means in Terms of General Moduli of Smoothness
Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equivalence of the error of approximation by Fourier means and of general moduli of smoothness, provided that their generators are equivalent, is established.
Keywords: Fourier mean, general modulus of smoothness, Bernstein inequality, Jackson-type estimate, planar partition of unity, Fejér mean, Rogozinskii mean, Riesz derivative.
@article{MZM_2015_98_1_a0,
     author = {S. Yu. Artamonov},
     title = {Quality of {Approximation} by {Fourier} {Means} in {Terms} of {General} {Moduli} of {Smoothness}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a0/}
}
TY  - JOUR
AU  - S. Yu. Artamonov
TI  - Quality of Approximation by Fourier Means in Terms of General Moduli of Smoothness
JO  - Matematičeskie zametki
PY  - 2015
SP  - 3
EP  - 11
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a0/
LA  - ru
ID  - MZM_2015_98_1_a0
ER  - 
%0 Journal Article
%A S. Yu. Artamonov
%T Quality of Approximation by Fourier Means in Terms of General Moduli of Smoothness
%J Matematičeskie zametki
%D 2015
%P 3-11
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a0/
%G ru
%F MZM_2015_98_1_a0
S. Yu. Artamonov. Quality of Approximation by Fourier Means in Terms of General Moduli of Smoothness. Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a0/

[1] A. I. Kozko, A. V. Rozhdestvenskii, “O neravenstve Dzheksona v $L_2$ s obobschennym modulem nepreryvnosti”, Matem. sb., 195:8 (2004), 3–46 | DOI | MR | Zbl

[2] S. N. Vasilev, “Neravenstvo Dzheksona v $L_2(\mathbb T^N)$ s obobschennym modulem nepreryvnosti”, Tr. IMM UrO RAN, 15, no. 1, 2009, 102–110

[3] K. V. Runovskii, “Pryamaya teorema teorii priblizhenii dlya obschego modulya gladkosti”, Matem. zametki, 95:6 (2014), 899–910 | DOI

[4] K. Runovski, H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means”, J. Comput. Anal. Appl., 6:3 (2004), 211–220 | MR | Zbl

[5] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl

[6] K. Runovski, H.-J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness. I”, Eurasian Math. J., 2:3 (2011), 98–124 | MR | Zbl

[7] K. Runovski, H.-J. Schmeisser, “On some extensions of Bernstein's inequalities for trigonometric polynomials”, Funct. Approx. Comment. Math., 29 (2001), 125–142 | MR

[8] V. Rukasov, K. Runovski, H.-J. Schmeisser, “Approximation by families of linear trigonometric polynomial operators and smoothness properties of functions”, Math. Nachr., 284:11-12 (2011), 1523–1537 | DOI | MR | Zbl

[9] Z. Burinska, K. Runovski, H.-J. Schmeisser, “On quality of approximation by families of generalized sampling series”, Sampl. Theory Signal Image Process, 8:2 (2009), 105–126 | MR | Zbl

[10] K. Runovski, H.-J. Schmeisser, “General Moduli of Smoothness and Approximation by Families of Linear Polynomial Operators”, New Perspectives on Approximation and Sampling Theory, Festschrift in Honor of Paul Butzer's 85th Birthday, eds. A. I. Zayed, G. Schmeisser, Birkhäuser, 2014, 269–298

[11] R. M. Trigub, “Tochnyi poryadok priblizheniya periodicheskikh funktsii polinomami Bernshteina–Stechkina”, Matem. sb., 204:12 (2013), 127–146 | DOI | MR | Zbl

[12] R. M. Trigub, “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami funktsii na tore”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1378–1409 | MR | Zbl

[13] K. Runovski, H.-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Jenaer Schriften für Mathematik und Informatik. Math/Inf/01/11, 2011