Characterization of Locally Noetherian Varieties in Terms of Idempotents
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 925-929.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a variety of associative rings is left and right locally Noetherian if and only if every finitely generated ring in the variety contains only finitely many idempotents.
Keywords: variety of associative rings, left (right) locally Noetherian ring, idempotent.
@article{MZM_2015_97_6_a9,
     author = {O. B. Finogenova},
     title = {Characterization of {Locally} {Noetherian} {Varieties} in {Terms} of {Idempotents}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {925--929},
     publisher = {mathdoc},
     volume = {97},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a9/}
}
TY  - JOUR
AU  - O. B. Finogenova
TI  - Characterization of Locally Noetherian Varieties in Terms of Idempotents
JO  - Matematičeskie zametki
PY  - 2015
SP  - 925
EP  - 929
VL  - 97
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a9/
LA  - ru
ID  - MZM_2015_97_6_a9
ER  - 
%0 Journal Article
%A O. B. Finogenova
%T Characterization of Locally Noetherian Varieties in Terms of Idempotents
%J Matematičeskie zametki
%D 2015
%P 925-929
%V 97
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a9/
%G ru
%F MZM_2015_97_6_a9
O. B. Finogenova. Characterization of Locally Noetherian Varieties in Terms of Idempotents. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 925-929. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a9/

[1] V. N. Latyshev, “Obobschenie teoremy Gilberta o konechnosti bazisov”, Sib. matem. zhurn., 7 (1966), 1422–1424 | MR | Zbl

[2] I. V. Lvov, “Usloviya maksimalnosti v algebrakh s tozhdestvennymi sootnosheniyami”, Algebra i logika, 8 (1969), 449–459 | MR | Zbl

[3] S. I. Kublanovskii, “O mnogoobraziyakh assotsiativnykh algebr s lokalnymi usloviyami konechnosti”, Algebra i analiz, 9:4 (1997), 119–174 | MR | Zbl

[4] A. Z. Ananin, “Lokalno finitno approksimiruemye i lokalno predstavimye mnogoobraziya algebr”, Algebra i logika, 16 (1977), 3–23 | MR | Zbl

[5] O. B. Paison, M. V. Volkov, M. V. Sapir, “Finitnaya otdelimost v mnogoobraziyakh assotsiativnykh kolets”, Algebra i logika, 38:2 (1999), 201–227 | MR | Zbl

[6] Yu. N. Maltsev, “O mnogoobraziyakh assotsiativnykh algebr”, Algebra i logika, 15 (1976), 579–584 | MR | Zbl