Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the L\'evy Laplacian.~II
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 917-924.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the following nonlinear hyperbolic equation with variable coefficients and the infinite-dimensional Lévy Laplacian $\Delta_L$, \begin{align*} \biggl(\sqrt{2}\|x\|_H \frac{\partial U(t,x)}{\partial t} \ln\frac{1}{\sqrt{2}\|x\|_H (\partial U(t,x)/\partial t)}\biggr)^{-1} \frac{\partial^2U(t,x)}{\partial t^2} -\alpha(U(t,x)) \biggl[\frac{\partial U(t,x)}{\partial t}\biggr]^2 \\ \qquad =\Delta_LU(t,x), \end{align*} formulas for the solution of the boundary-value problem $$ U(0,x)=u_0,\qquad U(t,0)=u_1 $$ and of the exterior boundary-value problem $$ U(0,x)=v_0,\qquad U(t,x)|_\Gamma=v_1,\qquad \lim_{\|x\|_H \to\infty}U(t,x)=v_2 $$ are obtained.
Keywords: nonlinear hyperbolic equation, Lévy Laplacian, boundary-value problem, exterior boundary-value problem, Shilov function class.
@article{MZM_2015_97_6_a8,
     author = {M. N. Feller},
     title = {Boundary-Value {Problems} for a {Nonlinear} {Hyperbolic} {Equation} with {Variable} {Coefficients} and the {L\'evy} {Laplacian.~II}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {917--924},
     publisher = {mathdoc},
     volume = {97},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a8/}
}
TY  - JOUR
AU  - M. N. Feller
TI  - Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the L\'evy Laplacian.~II
JO  - Matematičeskie zametki
PY  - 2015
SP  - 917
EP  - 924
VL  - 97
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a8/
LA  - ru
ID  - MZM_2015_97_6_a8
ER  - 
%0 Journal Article
%A M. N. Feller
%T Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the L\'evy Laplacian.~II
%J Matematičeskie zametki
%D 2015
%P 917-924
%V 97
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a8/
%G ru
%F MZM_2015_97_6_a8
M. N. Feller. Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the L\'evy Laplacian.~II. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 917-924. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a8/

[1] P. Lévy, Problémes concrets d'analyse fonctionnelle, Gauthier–Villars, Paris, 1951 | MR | Zbl

[2] M. N. Feller, The Lévy Laplacian, Cambridge Tracts in Math., 166, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[3] M. N. Feller, “Kraevye zadachi dlya volnovogo uravneniya s laplasianom Levi v klasse Gato”, Ukr. matem. zhurn., 61:11 (2009), 1564–1574 | MR | Zbl

[4] S. Albeverio, Ya. I. Belopolskaya, M. N. Feller, “Boundary problems for the wave equation with the Lévy Laplacian in Shilov's class”, Methods Funct. Anal.Topology, 16:3 (2010), 197–202 | MR | Zbl

[5] S. A. Albeverio, Ya. I. Belopolskaya, M. N. Feller, “Zadacha Koshi dlya volnovogo uravneniya s laplasianom Levi”, Matem. zametki, 87:6 (2010), 803–813 | DOI | MR | Zbl

[6] M. N. Feller, “Kraevye zadachi dlya nelineinogo giperbolicheskogo uravneniya s divergentnoi chastyu i s laplasianom Levi”, Ukr. matem. zhurn., 64:2 (2012), 237–244 | MR | Zbl

[7] I. I. Kovtun, M. N. Feller, “Kraevye zadachi dlya nelineinogo giperbolicheskogo uravneniya s laplasianom Levi”, Ukr. matem. zhurn., 64:11 (2013), 1492–1499 | MR | Zbl

[8] M. N. Feller, “Kraevye zadachi dlya nelineinogo giperbolicheskogo uravneniya s peremennymi koeffitsientami i laplasianom Levi”, Matem. zametki, 96:3 (2014), 440–449 | DOI

[9] G. E. Shilov, “O nekotorykh voprosakh analiza v gilbertovom prostranstve, I”, Funkts. analiz i ego pril., 1:2 (1967), 81–90 | MR | Zbl