Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_6_a5, author = {D. A. Korshunov and V. I. Piterbarg and E. Hashorva}, title = {On the {Asymptotic} {Laplace} {Method} and {Its} {Application} to {Random} {Chaos}}, journal = {Matemati\v{c}eskie zametki}, pages = {868--883}, publisher = {mathdoc}, volume = {97}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/} }
TY - JOUR AU - D. A. Korshunov AU - V. I. Piterbarg AU - E. Hashorva TI - On the Asymptotic Laplace Method and Its Application to Random Chaos JO - Matematičeskie zametki PY - 2015 SP - 868 EP - 883 VL - 97 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/ LA - ru ID - MZM_2015_97_6_a5 ER -
D. A. Korshunov; V. I. Piterbarg; E. Hashorva. On the Asymptotic Laplace Method and Its Application to Random Chaos. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 868-883. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/
[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Tom 2. Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR
[2] E. Combet, Intégrales Exponentielles. Développements Asymptotiques, Propriétés Lagrangiennes, Lecture Notes in Math., 937, Springer-Verlag, Berlin, 1982 | DOI | MR | Zbl
[3] C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers. I. Asymptotic Methods and Perturbation Theory, Springer-Verlag, New York, 1999 | MR
[4] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1987 | MR | Zbl
[5] O. E. Trofimov, D. G. Frizen, “Koeffitsienty asimptoticheskogo razlozheniya integralov po metodu Laplasa”, Avtometriya, 2 (1981), 94
[6] R. Wong, Asymptotic Approximations of Integrals, Computer Science and Scientific Computing, Academic Press, Boston, MA, 1989 | MR | Zbl
[7] N. Bleistein, R. A. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart and Winston, New York, 1975 | Zbl
[8] W. Fulks, J. O. Sather, “Asymptotics. II. Laplace's method for multiple integrals”, Pacific J. Math., 11 (1961), 185–192 | DOI | MR | Zbl
[9] J. Wojdylo, “Computing the coefficients in Laplace's method”, SIAM Rev., 48:1 (2006), 76–96 | DOI | MR | Zbl
[10] J. L. López, P. Pagola, E. Pérez Sinusía, “A simplification of Laplace's method: applications to the Gamma function and Gauss hypergeometric function”, J. Approx. Theory, 161 (2009), 280–291 | DOI | MR | Zbl
[11] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR
[12] Ph. Barbe, Approximation of Integrals over Asymptotic Sets with Applications to Probability and Statistics, 2003, arXiv: math/0312132
[13] K. W. Breitung, Asymptotic Approximations for Probability Integrals, Lecture Notes in Math., 1592, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl
[14] N. Wiener, “The homogeneous chaos”, Amer. J. Math., 60:4 (1938), 897–936 | DOI | MR | Zbl
[15] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR | Zbl
[16] W.-D. Richter, “Generalized spherical and simplicial coordinates”, J. Math. Anal. Appl., 336:2 (2007), 1187–1202 | DOI | MR | Zbl
[17] E. Hashorva, D. Korshunov, V. I. Piterbarg, “Asymptotic expansion of Gaussian chaos via probabilistic approach”, Extremes, 2015 | DOI
[18] D. A. Korshunov, V. I. Piterbarg, E. Khashorva, “Ob ekstremalnykh znacheniyakh gaussovskogo khaosa”, Dokl. RAN, 452:5 (2013), 483–485 | DOI | MR | Zbl
[19] S. Foss, D. Korshunov, S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2011 | MR | Zbl