On the Asymptotic Laplace Method and Its Application to Random Chaos
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 868-883

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics of the multidimensional Laplace integral for the case in which the phase attains its minimum on an arbitrary smooth manifold is studied. Applications to the study of the asymptotics of the distribution of Gaussian and Weibullian random chaoses are considered.
Keywords: Laplace asymptotic method, Gaussian chaos, Weibullian chaos, Gelfand–Leray differential form, random chaos.
@article{MZM_2015_97_6_a5,
     author = {D. A. Korshunov and V. I. Piterbarg and E. Hashorva},
     title = {On the {Asymptotic} {Laplace} {Method} and {Its} {Application} to {Random} {Chaos}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {868--883},
     publisher = {mathdoc},
     volume = {97},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/}
}
TY  - JOUR
AU  - D. A. Korshunov
AU  - V. I. Piterbarg
AU  - E. Hashorva
TI  - On the Asymptotic Laplace Method and Its Application to Random Chaos
JO  - Matematičeskie zametki
PY  - 2015
SP  - 868
EP  - 883
VL  - 97
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/
LA  - ru
ID  - MZM_2015_97_6_a5
ER  - 
%0 Journal Article
%A D. A. Korshunov
%A V. I. Piterbarg
%A E. Hashorva
%T On the Asymptotic Laplace Method and Its Application to Random Chaos
%J Matematičeskie zametki
%D 2015
%P 868-883
%V 97
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/
%G ru
%F MZM_2015_97_6_a5
D. A. Korshunov; V. I. Piterbarg; E. Hashorva. On the Asymptotic Laplace Method and Its Application to Random Chaos. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 868-883. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/