On the Asymptotic Laplace Method and Its Application to Random Chaos
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 868-883.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics of the multidimensional Laplace integral for the case in which the phase attains its minimum on an arbitrary smooth manifold is studied. Applications to the study of the asymptotics of the distribution of Gaussian and Weibullian random chaoses are considered.
Keywords: Laplace asymptotic method, Gaussian chaos, Weibullian chaos, Gelfand–Leray differential form, random chaos.
@article{MZM_2015_97_6_a5,
     author = {D. A. Korshunov and V. I. Piterbarg and E. Hashorva},
     title = {On the {Asymptotic} {Laplace} {Method} and {Its} {Application} to {Random} {Chaos}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {868--883},
     publisher = {mathdoc},
     volume = {97},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/}
}
TY  - JOUR
AU  - D. A. Korshunov
AU  - V. I. Piterbarg
AU  - E. Hashorva
TI  - On the Asymptotic Laplace Method and Its Application to Random Chaos
JO  - Matematičeskie zametki
PY  - 2015
SP  - 868
EP  - 883
VL  - 97
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/
LA  - ru
ID  - MZM_2015_97_6_a5
ER  - 
%0 Journal Article
%A D. A. Korshunov
%A V. I. Piterbarg
%A E. Hashorva
%T On the Asymptotic Laplace Method and Its Application to Random Chaos
%J Matematičeskie zametki
%D 2015
%P 868-883
%V 97
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/
%G ru
%F MZM_2015_97_6_a5
D. A. Korshunov; V. I. Piterbarg; E. Hashorva. On the Asymptotic Laplace Method and Its Application to Random Chaos. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 868-883. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a5/

[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Tom 2. Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR

[2] E. Combet, Intégrales Exponentielles. Développements Asymptotiques, Propriétés Lagrangiennes, Lecture Notes in Math., 937, Springer-Verlag, Berlin, 1982 | DOI | MR | Zbl

[3] C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers. I. Asymptotic Methods and Perturbation Theory, Springer-Verlag, New York, 1999 | MR

[4] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1987 | MR | Zbl

[5] O. E. Trofimov, D. G. Frizen, “Koeffitsienty asimptoticheskogo razlozheniya integralov po metodu Laplasa”, Avtometriya, 2 (1981), 94

[6] R. Wong, Asymptotic Approximations of Integrals, Computer Science and Scientific Computing, Academic Press, Boston, MA, 1989 | MR | Zbl

[7] N. Bleistein, R. A. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart and Winston, New York, 1975 | Zbl

[8] W. Fulks, J. O. Sather, “Asymptotics. II. Laplace's method for multiple integrals”, Pacific J. Math., 11 (1961), 185–192 | DOI | MR | Zbl

[9] J. Wojdylo, “Computing the coefficients in Laplace's method”, SIAM Rev., 48:1 (2006), 76–96 | DOI | MR | Zbl

[10] J. L. López, P. Pagola, E. Pérez Sinusía, “A simplification of Laplace's method: applications to the Gamma function and Gauss hypergeometric function”, J. Approx. Theory, 161 (2009), 280–291 | DOI | MR | Zbl

[11] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR

[12] Ph. Barbe, Approximation of Integrals over Asymptotic Sets with Applications to Probability and Statistics, 2003, arXiv: math/0312132

[13] K. W. Breitung, Asymptotic Approximations for Probability Integrals, Lecture Notes in Math., 1592, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[14] N. Wiener, “The homogeneous chaos”, Amer. J. Math., 60:4 (1938), 897–936 | DOI | MR | Zbl

[15] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR | Zbl

[16] W.-D. Richter, “Generalized spherical and simplicial coordinates”, J. Math. Anal. Appl., 336:2 (2007), 1187–1202 | DOI | MR | Zbl

[17] E. Hashorva, D. Korshunov, V. I. Piterbarg, “Asymptotic expansion of Gaussian chaos via probabilistic approach”, Extremes, 2015 | DOI

[18] D. A. Korshunov, V. I. Piterbarg, E. Khashorva, “Ob ekstremalnykh znacheniyakh gaussovskogo khaosa”, Dokl. RAN, 452:5 (2013), 483–485 | DOI | MR | Zbl

[19] S. Foss, D. Korshunov, S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2011 | MR | Zbl