A Priori Lower Bound for the Minimal Eigenvalue of a Sturm--Liouville Problem with Boundary Conditions of the Second Type
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 832-840.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the attainability of the infimum $m_\gamma$ for the minimal eigenvalues of the boundary-value problems \begin{gather*} -y''+qy=\lambda y, \\ y'(0)=y'(1)=0 \end{gather*} as the nonnegative potential $q\in L_1[0,1]$ ranges over the unit sphere of the space $L_\gamma[0,1]$, where $\gamma\in (0,1)$. We also establish that, for $\gamma\leqslant 1-2\pi^{-2}$, the equality $m_\gamma=1$ holds and that, otherwise, the inequality $m_\gamma1$ is valid.
Mots-clés : Sturm–Liouville problem, infimum
Keywords: Lagrange finite-increment theorem, minimal eigenvalue, Hölder's inequality, the space $L_\gamma[0,1]$, $\gamma\in (0,1)$.
@article{MZM_2015_97_6_a2,
     author = {A. A. Vladimirov and E. S. Karulina},
     title = {A {Priori} {Lower} {Bound} for the {Minimal} {Eigenvalue} of a {Sturm--Liouville} {Problem} with {Boundary} {Conditions} of the {Second} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {832--840},
     publisher = {mathdoc},
     volume = {97},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a2/}
}
TY  - JOUR
AU  - A. A. Vladimirov
AU  - E. S. Karulina
TI  - A Priori Lower Bound for the Minimal Eigenvalue of a Sturm--Liouville Problem with Boundary Conditions of the Second Type
JO  - Matematičeskie zametki
PY  - 2015
SP  - 832
EP  - 840
VL  - 97
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a2/
LA  - ru
ID  - MZM_2015_97_6_a2
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%A E. S. Karulina
%T A Priori Lower Bound for the Minimal Eigenvalue of a Sturm--Liouville Problem with Boundary Conditions of the Second Type
%J Matematičeskie zametki
%D 2015
%P 832-840
%V 97
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a2/
%G ru
%F MZM_2015_97_6_a2
A. A. Vladimirov; E. S. Karulina. A Priori Lower Bound for the Minimal Eigenvalue of a Sturm--Liouville Problem with Boundary Conditions of the Second Type. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 832-840. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a2/

[1] Yu. V. Egorov, V. A. Kondratev, “Ob otsenkakh pervogo sobstvennogo znacheniya v nekotorykh zadachakh Shturma–Liuvillya”, UMN, 51:3 (1996), 73–144 | DOI | MR | Zbl

[2] O. V. Muryshkina, “Ob otsenkakh minimalnogo sobstvennogo znacheniya zadachi Shturma–Liuvillya s nesimmetrichnymi kraevymi usloviyami”, Differents. uravneniya, 37:6 (2001), 854

[3] S. S. Ezhak, “Ob otsenkakh minimalnogo sobstvennogo znacheniya zadachi Shturma–Liuvillya s integralnym usloviem”, Sovrem. matem. i ee prilozh., 36 (2007), 56–69 | MR | Zbl

[4] V. A. Vinokurov, V. A. Sadovnichii, “O granitsakh izmeneniya sobstvennogo znacheniya pri izmenenii potentsiala”, Dokl. RAN, 392:5 (2003), 592–597 | MR | Zbl

[5] Yu. V. Egorov, V. A. Kondratev, “Ob otsenkakh pervogo sobstvennogo znacheniya zadachi Shturma–Liuvillya”, UMN, 39:2 (1984), 151–152 | MR | Zbl

[6] E. S. Karulina, “Otsenki pervogo sobstvennogo znacheniya zadachi Shturma–Liuvillya s kraevymi usloviyami tretego tipa”, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, YuNITI-DANA, M., 2012, 560–607

[7] E. S. Karulina, A. A. Vladimirov, “The Sturm–Liouville problem with singular potential and the extrema of the first eigenvalue”, Tatra Mt. Math. Publ., 54 (2013), 101–118 | MR | Zbl

[8] A. I. Nazarov, “O tochnykh konstantakh v odnomernykh teoremakh vlozheniya proizvolnogo poryadka”, Problemy sovremennoi teorii priblizhenii, Izd-vo SPbGU, SPb., 2004, 146–158