On the Gain of Entanglement Assistance in the Classical Capacity of Quantum Gaussian Channels
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 951-954.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : quantum information transmission
Keywords: quantum state, quantum Gaussian channel, classical entanglement-assisted channel capacity, classical unassisted channel capacity, Gaussian minimizer, entropy, Weyl operator, symplectic space.
@article{MZM_2015_97_6_a15,
     author = {A. S. Holevo and M. E. Shirokov},
     title = {On the {Gain} of {Entanglement} {Assistance} in the {Classical} {Capacity} of {Quantum} {Gaussian} {Channels}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {951--954},
     publisher = {mathdoc},
     volume = {97},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a15/}
}
TY  - JOUR
AU  - A. S. Holevo
AU  - M. E. Shirokov
TI  - On the Gain of Entanglement Assistance in the Classical Capacity of Quantum Gaussian Channels
JO  - Matematičeskie zametki
PY  - 2015
SP  - 951
EP  - 954
VL  - 97
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a15/
LA  - ru
ID  - MZM_2015_97_6_a15
ER  - 
%0 Journal Article
%A A. S. Holevo
%A M. E. Shirokov
%T On the Gain of Entanglement Assistance in the Classical Capacity of Quantum Gaussian Channels
%J Matematičeskie zametki
%D 2015
%P 951-954
%V 97
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a15/
%G ru
%F MZM_2015_97_6_a15
A. S. Holevo; M. E. Shirokov. On the Gain of Entanglement Assistance in the Classical Capacity of Quantum Gaussian Channels. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 951-954. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a15/

[1] A. S. Kholevo, Kvantovye sistemy, kanaly, informatsiya, MTsNMO, M., 2010

[2] C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyal, IEEE Trans. Inform. Theory, 48:10 (2002), 2637–2655 | DOI | MR | Zbl

[3] A. S. Kholevo, TVP, 48:2 (2003), 359–374 | DOI | MR | Zbl

[4] A. S. Kholevo, M. E. Shirokov, Probl. peredachi inform., 49:1 (2013), 19–36 | MR

[5] M. E. Shirokov, Probl. peredachi inform., 48:2 (2012), 3–20 | MR | Zbl

[6] V. Giovannetti, A. S. Holevo, R. García-Patrón, Commun. Math. Phys., 334:3 (2015), 1553–1571 | DOI | MR | Zbl

[7] Russian Math. Surveys, 70:2 (2015), 331–367 | DOI | DOI | MR | Zbl

[8] A. S. Holevo, On the Constrained Classical Capacity of Infinite-Dimensional Covariant Channels, arXiv: 1409.8085

[9] A. S. Kholevo, Probl. peredachi inform., 50:1 (2014), 3–17 | MR