Compactness and Convergence of Monotone Subnets
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 945-946.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: directed set, well-ordered set.
Mots-clés : net, monotone subnet
@article{MZM_2015_97_6_a13,
     author = {V. G. Puzarenko and K. V. Storozhuk},
     title = {Compactness and {Convergence} of {Monotone} {Subnets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {945--946},
     publisher = {mathdoc},
     volume = {97},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a13/}
}
TY  - JOUR
AU  - V. G. Puzarenko
AU  - K. V. Storozhuk
TI  - Compactness and Convergence of Monotone Subnets
JO  - Matematičeskie zametki
PY  - 2015
SP  - 945
EP  - 946
VL  - 97
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a13/
LA  - ru
ID  - MZM_2015_97_6_a13
ER  - 
%0 Journal Article
%A V. G. Puzarenko
%A K. V. Storozhuk
%T Compactness and Convergence of Monotone Subnets
%J Matematičeskie zametki
%D 2015
%P 945-946
%V 97
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a13/
%G ru
%F MZM_2015_97_6_a13
V. G. Puzarenko; K. V. Storozhuk. Compactness and Convergence of Monotone Subnets. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 945-946. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a13/

[1] E. H. Moore, H. L. Smith, Amer. J. Math., 44:2 (1922), 102–121 | DOI | MR | Zbl

[2] Birkhoff, Garrett, Ann. of Math. (2), 38:1 (1937), 39–56 | DOI | MR | Zbl

[3] Dzh. L. Kelli, Obschaya topologiya, Nauka, M., 1981 | MR | Zbl

[4] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl