Ergodic Theorem for a~Queue with Unreliable Server
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 803-814.

Voir la notice de l'article provenant de la source Math-Net.Ru

A single server queue with unreliable server is considered. The server breakdown probability depends on the state of a random medium described by a Markov chain. An ergodic theorem is proved for this system.
Keywords: regenerative flow, unreliable server, ergodicity, limit theorems, random medium.
Mots-clés : Markov chain
@article{MZM_2015_97_6_a0,
     author = {S. Zh. Aibatov},
     title = {Ergodic {Theorem} for {a~Queue} with {Unreliable} {Server}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--814},
     publisher = {mathdoc},
     volume = {97},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a0/}
}
TY  - JOUR
AU  - S. Zh. Aibatov
TI  - Ergodic Theorem for a~Queue with Unreliable Server
JO  - Matematičeskie zametki
PY  - 2015
SP  - 803
EP  - 814
VL  - 97
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a0/
LA  - ru
ID  - MZM_2015_97_6_a0
ER  - 
%0 Journal Article
%A S. Zh. Aibatov
%T Ergodic Theorem for a~Queue with Unreliable Server
%J Matematičeskie zametki
%D 2015
%P 803-814
%V 97
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a0/
%G ru
%F MZM_2015_97_6_a0
S. Zh. Aibatov. Ergodic Theorem for a~Queue with Unreliable Server. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 803-814. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a0/

[1] H. White, L. S. Christie, “Queuing with preemptive priorities or with breakdown”, Operations Res., 6:1 (1958), 79–95 | DOI | MR

[2] D. P. Gaver, Jr., “A waiting line with interrupted service including priority”, J. Roy. Statist. Soc. Ser. B, 24 (1962), 73–90 | MR | Zbl

[3] J. Keilson, “Queues subject to service interruptions”, Ann. Math. Statist., 33:4 (1962), 1314–1322 | MR | Zbl

[4] T. Kernane, A Single Server Retrial Queue with Different Types of Server Interruptions, E-print, 2009

[5] A. Krishnamoorthy, P. K. Pramod, T. G. Deepak, “On a queue with interruptions and repeat or resumption of service”, Nonlinear Anal.: Theory Methods Appl., 2009:12, e-Suppl., 1673–1683 | MR | Zbl

[6] L. G. Afanaseva, “Sistemy massovogo obsluzhivaniya s tsiklicheskimi upravlyayuschimi protsessami”, Kibernetika i sistemnyi analiz, 41:1 (2005), 54–68

[7] L. G. Afanasyeva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Syst., 76:2 (2014), 125–147 | DOI | MR

[8] R. A. Howard, “Research in semi-Markovian decision structures”, J. Oper. Res. Soc. Japan, 6:4 (1964), 163–199 | MR

[9] L. G. Afanasyeva, E. E. Bashtova, E. V. Bulinskaya, “Limit theorems for semi-Markov queues and their applications”, Comm. Statist. Simulation Comput., 41:6 (2012), 688–709 | DOI | MR | Zbl

[10] L. G. Afanaseva, E. V. Bulinskaya, Sluchainye protsessy v teorii massovogo obsluzhivaniya i upravleniya zapasami, Izd-vo Mosk. un-ta, M., 1980 | Zbl

[11] A. A. Borovkov, Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972 | MR | Zbl

[12] L. G. Afanaseva, A. V. Tkachenko, “Mnogokanalnye sistemy obsluzhivaniya s regeniriruyuschim vkhodyaschim potokom”, TVP, 58:2 (2013), 210–234 | DOI | Zbl

[13] T. Saati, Elementy teorii massovogo obsluzhivaniya i ee prilozheniya, Sovetskoe radio, M., 1971 | MR | Zbl