Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_5_a4, author = {A. V. Zvyagin and V. P. Orlov}, title = {Solvability of the {Thermoviscoelasticity} {Problem} for {Linearly} {Elastically} {Retarded} {Voigt} {Fluid}}, journal = {Matemati\v{c}eskie zametki}, pages = {681--698}, publisher = {mathdoc}, volume = {97}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a4/} }
TY - JOUR AU - A. V. Zvyagin AU - V. P. Orlov TI - Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid JO - Matematičeskie zametki PY - 2015 SP - 681 EP - 698 VL - 97 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a4/ LA - ru ID - MZM_2015_97_5_a4 ER -
A. V. Zvyagin; V. P. Orlov. Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 681-698. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a4/
[1] A. P. Oskolkov, “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 7, Zap. nauchn. sem. LOMI, 38, Izd-vo «Nauka», Leningrad. otd., L., 1973, 98–136 | MR | Zbl
[2] A. P. Oskolkov, “O nekotorykh nestatsionarnykh lineinykh i kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 9, Zap. nauchn. sem. LOMI, 59, Izd-vo «Nauka», Leningrad. otd., L., 1976, 133–177 | MR | Zbl
[3] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND URSS, M., 2012
[4] A. V. Zvyagin, “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative”, Nonlinear Anal. Theory Methods Appl., 90 (2013), 70–85 | DOI | MR | Zbl
[5] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Izd-vo «Nauka», Sib. otd., Novosibirsk, 1983 | MR | Zbl
[6] V. G. Zvyagin, V. P. Orlov, “Razreshimost v slabom smysle sistemy termovyazkouprugosti dlya modeli Dzheffrisa”, Izv. vuzov. Matem., 2013, no. 9, 64–69 | Zbl
[7] V. P. Orlov, M. I. Parshin, “Ob odnoi zadache dinamiki termovyazkouprugoi sredy tipa Oldroida”, Izv. vuzov. Matem., 2014, no. 5, 68–74 | Zbl
[8] A. V. Zvyagin, V. P. Orlov, “Razreshimost zadachi termovyazkouprugosti dlya odnoi modeli Oskolkova”, Izv. vuzov. Matem., 2014, no. 9, 69–74
[9] V. G. Zvyagin, V. T. Dmitrienko, Approksimatsionno–topologicheskii podkhod k issledovaniyu zadach gidrodinamiki, Editorial URSS, M., 2004
[10] D. Blanchard, N. Bruyère, O. Guibé, “Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation”, Commun. Pure Appl. Anal., 12:5 (2013), 2213–2227 | DOI | MR | Zbl
[11] D. Blanchard, “A few result on coupled systems of thermomechanics”, On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments, Quad. Mat., 23, Seconda Univ. Napoli, Caserta, 2009, 145–182 | MR
[12] J. Simon, “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96 | DOI | MR | Zbl