Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid
Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 681-698.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the existence of a weak solution to the initial boundary-value thermoviscoelasticity problem for a mathematical model describing the flow of linearly elastically retarded Voigt fluid.
Keywords: thermoviscoelasticity problem, Leray–Schauder degree theory, initial boundary-value problem, Banach space.
Mots-clés : Voigt fluid
@article{MZM_2015_97_5_a4,
     author = {A. V. Zvyagin and V. P. Orlov},
     title = {Solvability of the {Thermoviscoelasticity} {Problem} for {Linearly} {Elastically} {Retarded} {Voigt} {Fluid}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {681--698},
     publisher = {mathdoc},
     volume = {97},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a4/}
}
TY  - JOUR
AU  - A. V. Zvyagin
AU  - V. P. Orlov
TI  - Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid
JO  - Matematičeskie zametki
PY  - 2015
SP  - 681
EP  - 698
VL  - 97
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a4/
LA  - ru
ID  - MZM_2015_97_5_a4
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%A V. P. Orlov
%T Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid
%J Matematičeskie zametki
%D 2015
%P 681-698
%V 97
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a4/
%G ru
%F MZM_2015_97_5_a4
A. V. Zvyagin; V. P. Orlov. Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 681-698. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a4/

[1] A. P. Oskolkov, “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 7, Zap. nauchn. sem. LOMI, 38, Izd-vo «Nauka», Leningrad. otd., L., 1973, 98–136 | MR | Zbl

[2] A. P. Oskolkov, “O nekotorykh nestatsionarnykh lineinykh i kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 9, Zap. nauchn. sem. LOMI, 59, Izd-vo «Nauka», Leningrad. otd., L., 1976, 133–177 | MR | Zbl

[3] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND URSS, M., 2012

[4] A. V. Zvyagin, “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative”, Nonlinear Anal. Theory Methods Appl., 90 (2013), 70–85 | DOI | MR | Zbl

[5] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Izd-vo «Nauka», Sib. otd., Novosibirsk, 1983 | MR | Zbl

[6] V. G. Zvyagin, V. P. Orlov, “Razreshimost v slabom smysle sistemy termovyazkouprugosti dlya modeli Dzheffrisa”, Izv. vuzov. Matem., 2013, no. 9, 64–69 | Zbl

[7] V. P. Orlov, M. I. Parshin, “Ob odnoi zadache dinamiki termovyazkouprugoi sredy tipa Oldroida”, Izv. vuzov. Matem., 2014, no. 5, 68–74 | Zbl

[8] A. V. Zvyagin, V. P. Orlov, “Razreshimost zadachi termovyazkouprugosti dlya odnoi modeli Oskolkova”, Izv. vuzov. Matem., 2014, no. 9, 69–74

[9] V. G. Zvyagin, V. T. Dmitrienko, Approksimatsionno–topologicheskii podkhod k issledovaniyu zadach gidrodinamiki, Editorial URSS, M., 2004

[10] D. Blanchard, N. Bruyère, O. Guibé, “Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation”, Commun. Pure Appl. Anal., 12:5 (2013), 2213–2227 | DOI | MR | Zbl

[11] D. Blanchard, “A few result on coupled systems of thermomechanics”, On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments, Quad. Mat., 23, Seconda Univ. Napoli, Caserta, 2009, 145–182 | MR

[12] J. Simon, “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96 | DOI | MR | Zbl