Harmonic Analysis of Some Classes of Linear Operators on a Real Banach Space
Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 670-680.

Voir la notice de l'article provenant de la source Math-Net.Ru

For some classes of bounded linear operators acting in a real Banach space, the methods of abstract harmonic analysis are used to obtain conditions for these operators to be decomposable in the sense of Foiaş and the conditions for the existence of a nontrivial invariant subspace.
Keywords: bounded linear operator, decomposable operator, superdecomposable operator, invariant subspace, real Banach space, Banach module, decomposability in the sense of Foiaş, Beurling spectrum.
@article{MZM_2015_97_5_a3,
     author = {E. E. Dikarev and D. M. Polyakov},
     title = {Harmonic {Analysis} of {Some} {Classes} of {Linear} {Operators} on a {Real} {Banach} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {670--680},
     publisher = {mathdoc},
     volume = {97},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a3/}
}
TY  - JOUR
AU  - E. E. Dikarev
AU  - D. M. Polyakov
TI  - Harmonic Analysis of Some Classes of Linear Operators on a Real Banach Space
JO  - Matematičeskie zametki
PY  - 2015
SP  - 670
EP  - 680
VL  - 97
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a3/
LA  - ru
ID  - MZM_2015_97_5_a3
ER  - 
%0 Journal Article
%A E. E. Dikarev
%A D. M. Polyakov
%T Harmonic Analysis of Some Classes of Linear Operators on a Real Banach Space
%J Matematičeskie zametki
%D 2015
%P 670-680
%V 97
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a3/
%G ru
%F MZM_2015_97_5_a3
E. E. Dikarev; D. M. Polyakov. Harmonic Analysis of Some Classes of Linear Operators on a Real Banach Space. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 670-680. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a3/

[1] A. G. Baskakov, A. S. Zagorskii, “K spektralnoi teorii lineinykh otnoshenii na veschestvennykh banakhovykh prostranstvakh”, Matem. zametki, 81:1 (2007), 17–31 | DOI | MR | Zbl

[2] A. G. Baskakov, “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Funktsionalnyi analiz, SMFN, 9, MAI, M., 2004, 3–151 | MR | Zbl

[3] E. Kaniuth, A Course in Commutative Banach Algebras, Grad. Texts in Math., 246, Springer, New York, 2008 | MR | Zbl

[4] Yu. I. Lyubich, “Introduction to the Theory of Banach Representations of Groups”, Oper. Theory Adv. Appl., Birkhäuser Verlag, Basel, 1988 | MR | MR | Zbl | Zbl

[5] Y. Domar, L.-A. Lindahl, “Three spectral notions for representations of commutative Banach algebras”, Ann. Inst. Fourier (Grenoble), 25 (1975), 1–32, 2 | MR | Zbl

[6] Yu. I. Lyubich, V. I. Matsaev, G. M. Feldman, “O predstavleniyakh s otdelimym spektrom”, Funkts. analiz i ego pril., 7:2 (1973), 52–61 | MR | Zbl

[7] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 3. Spektralnye operatory, Mir, M., 1974 | MR | Zbl

[8] I. Colojoară, C. Foiaş, Theory of Generalized Spectral Operators, Math. Appl., 9, Gordon and Breach, New York, 1968 | MR | Zbl

[9] H. G. Dales, P. Aiena, J. Eschmeier, K. Laursen, G. A. Willis, Introduction to Banach Algebras, Operators, and Harmonic Analysis, London Math. Soc. Stud. Texts, 57, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[10] A. G. Baskakov, “Garmonicheskii analiz kosinusnoi i eksponentsialnoi operatornykh funktsii”, Matem. sb., 124:1 (1984), 68–95 | MR | Zbl

[11] A. G. Baskakov, “O spektralnom sinteze v banakhovykh modulyakh nad kommutativnymi banakhovymi algebrami”, Matem. zametki, 34:4 (1983), 573–585 | MR | Zbl

[12] A. G. Baskakov, “Neravenstva Bernshteinovskogo tipa v abstraktnom garmonicheskom analize”, Sib. matem. zhurn., 20:5 (1979), 942–952 | MR | Zbl

[13] G. E. Shilov, “O regulyarnykh normirovannykh koltsakh”, Tr. Matem. in-ta im. V. A. Steklova, 21, Izd-vo AN SSSR, M.–L., 1947, 3–118 | MR | Zbl

[14] K. V. Storozhuk, “Simmetrichnye invariantnye podprostranstva u kompleksifikatsii lineinykh operatorov”, Matem. zametki, 91:4 (2012), 638–640 | DOI | MR

[15] Yu. I. Lyubich, V. I. Matsaev, “Ob operatorakh s otdelimym spektrom”, Matem. sb., 56:4 (1962), 433–468 | MR | Zbl