Direct Jackson-Type Estimate for the General Modulus of Smoothness in the Nonperiodic Case
Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 794-797.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: approximation problem, entire function of exponential type, best approximation
Mots-clés : Fourier transform.
@article{MZM_2015_97_5_a12,
     author = {S. Yu. Artamonov},
     title = {Direct {Jackson-Type} {Estimate} for the {General} {Modulus} of {Smoothness} in the {Nonperiodic} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {794--797},
     publisher = {mathdoc},
     volume = {97},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a12/}
}
TY  - JOUR
AU  - S. Yu. Artamonov
TI  - Direct Jackson-Type Estimate for the General Modulus of Smoothness in the Nonperiodic Case
JO  - Matematičeskie zametki
PY  - 2015
SP  - 794
EP  - 797
VL  - 97
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a12/
LA  - ru
ID  - MZM_2015_97_5_a12
ER  - 
%0 Journal Article
%A S. Yu. Artamonov
%T Direct Jackson-Type Estimate for the General Modulus of Smoothness in the Nonperiodic Case
%J Matematičeskie zametki
%D 2015
%P 794-797
%V 97
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a12/
%G ru
%F MZM_2015_97_5_a12
S. Yu. Artamonov. Direct Jackson-Type Estimate for the General Modulus of Smoothness in the Nonperiodic Case. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 794-797. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a12/

[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[2] Z. Burinska, K. Runovski, H.-J. Schmeisser, Sampl. Theory Signal Image Process., 5:1 (2006), 59–87 | MR | Zbl

[3] Z. Burinska, K. Runovski, H.-J. Schmeisser, Sampl. Theory Signal Image Process., 8:2 (2009), 105–126 | MR | Zbl

[4] P. L. Butzer, W. Splettstösser, R. L. Stens, Jahresber. Deutsch. Math.-Verein., 90:1 (1988), 1–70 | MR | Zbl

[5] H.-J. Schmeisser, W. Sickel, Applied Mathematicks Reviews, Vol. 1, World Sci., Singapore, 2000, 205–284 | MR | Zbl

[6] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960 | MR

[7] K. V. Runovskii, Matem. zametki, 95:6 (2014), 899–910 | DOI

[8] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | Zbl

[9] K. Runovski, H.-J. Schmeisser, Eurasian Math. J., 2:3 (2011), 98–124 | MR | Zbl

[10] R. A DeVore, G.Ġ. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[11] D. Jackson, Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Diss., Göttingen, 1911

[12] S. B. Stechkin, Dokl. AN SSSR, 65:2 (1949), 135–137 | MR | Zbl

[13] S. B. Stechkin, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[14] K. Runovski, H.-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Preprint, 2011