Generalized Bezier Transformation
Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 655-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the generalized Bezier transformation and its application to the approximation of functions and the construction of curves are studied. The multidimensional version of this transformation is also considered.
Mots-clés : Bezier transformation
Keywords: Bezier function, Bezier curve, Bernstein polynomial, convex function, Stirling number, modulus of continuity.
@article{MZM_2015_97_5_a1,
     author = {Yu. I. Volkov},
     title = {Generalized {Bezier} {Transformation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {655--664},
     publisher = {mathdoc},
     volume = {97},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a1/}
}
TY  - JOUR
AU  - Yu. I. Volkov
TI  - Generalized Bezier Transformation
JO  - Matematičeskie zametki
PY  - 2015
SP  - 655
EP  - 664
VL  - 97
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a1/
LA  - ru
ID  - MZM_2015_97_5_a1
ER  - 
%0 Journal Article
%A Yu. I. Volkov
%T Generalized Bezier Transformation
%J Matematičeskie zametki
%D 2015
%P 655-664
%V 97
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a1/
%G ru
%F MZM_2015_97_5_a1
Yu. I. Volkov. Generalized Bezier Transformation. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 655-664. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a1/

[1] P. Shenen, M. Kosnar, I. Gardan, F. Rober, I. Rober, P. Vitomski, P. Kastelzho, Matematika i SAPR, Kn. 1, Mir, M., 1988

[2] Yu. I. Volkov, “O nekotorykh lineinykh polozhitelnykh operatorakh”, Matem. zametki, 23:5 (1978), 659–669 | MR | Zbl

[3] P. C. Sikkema, P. J. C. van der Meer, “The exact degree of local approximation by linear positive operators involving the modulus of continuity of the $p$-th derivative”, Indag. Math., 82:1 (1979), 63–76 | DOI | MR | Zbl

[4] Yu. I. Volkov, “Mnogomernye approksimatsionnye operatory, porozhdennye merami Lebega–Stiltesa”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 435–454 | MR | Zbl