Generalized Bezier Transformation
Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 655-664
Cet article a éte moissonné depuis la source Math-Net.Ru
The properties of the generalized Bezier transformation and its application to the approximation of functions and the construction of curves are studied. The multidimensional version of this transformation is also considered.
Mots-clés :
Bezier transformation
Keywords: Bezier function, Bezier curve, Bernstein polynomial, convex function, Stirling number, modulus of continuity.
Keywords: Bezier function, Bezier curve, Bernstein polynomial, convex function, Stirling number, modulus of continuity.
@article{MZM_2015_97_5_a1,
author = {Yu. I. Volkov},
title = {Generalized {Bezier} {Transformation}},
journal = {Matemati\v{c}eskie zametki},
pages = {655--664},
year = {2015},
volume = {97},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a1/}
}
Yu. I. Volkov. Generalized Bezier Transformation. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 655-664. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a1/
[1] P. Shenen, M. Kosnar, I. Gardan, F. Rober, I. Rober, P. Vitomski, P. Kastelzho, Matematika i SAPR, Kn. 1, Mir, M., 1988
[2] Yu. I. Volkov, “O nekotorykh lineinykh polozhitelnykh operatorakh”, Matem. zametki, 23:5 (1978), 659–669 | MR | Zbl
[3] P. C. Sikkema, P. J. C. van der Meer, “The exact degree of local approximation by linear positive operators involving the modulus of continuity of the $p$-th derivative”, Indag. Math., 82:1 (1979), 63–76 | DOI | MR | Zbl
[4] Yu. I. Volkov, “Mnogomernye approksimatsionnye operatory, porozhdennye merami Lebega–Stiltesa”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 435–454 | MR | Zbl