On the Computation of Eigenfunctions and Eigenvalues in the Sturm--Liouville Problem
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 604-608
Voir la notice de l'article provenant de la source Math-Net.Ru
We present the variational method for finding the eigenfunctions and eigenvalues in the Sturm–Liouville problem with Dirichlet boundary conditions; the method is based on the proposed functional. As a test example, we consider the potential $\cos(4x)$. Also computations for two functions $\sin((x-\pi)^2/\pi)$ and a high nonisosceles triangle are given.
Keywords:
variational method, functional, eigenfunction, eigenvalue, Dirichlet boundary condition, the function $\sin((x-\pi)^2/\pi)$, the function $\cos(4x)$, nonisosceles triangle, random search method, Wolfram Research, “Nminimize” procedure, algorithm.
Mots-clés : Sturm–Liouville problem
Mots-clés : Sturm–Liouville problem
@article{MZM_2015_97_4_a9,
author = {M. M. Khapaev and T. M. Khapaeva},
title = {On the {Computation} of {Eigenfunctions} and {Eigenvalues} in the {Sturm--Liouville} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {604--608},
publisher = {mathdoc},
volume = {97},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a9/}
}
TY - JOUR AU - M. M. Khapaev AU - T. M. Khapaeva TI - On the Computation of Eigenfunctions and Eigenvalues in the Sturm--Liouville Problem JO - Matematičeskie zametki PY - 2015 SP - 604 EP - 608 VL - 97 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a9/ LA - ru ID - MZM_2015_97_4_a9 ER -
M. M. Khapaev; T. M. Khapaeva. On the Computation of Eigenfunctions and Eigenvalues in the Sturm--Liouville Problem. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 604-608. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a9/