On the Computation of Eigenfunctions and Eigenvalues in the Sturm--Liouville Problem
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 604-608.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the variational method for finding the eigenfunctions and eigenvalues in the Sturm–Liouville problem with Dirichlet boundary conditions; the method is based on the proposed functional. As a test example, we consider the potential $\cos(4x)$. Also computations for two functions $\sin((x-\pi)^2/\pi)$ and a high nonisosceles triangle are given.
Keywords: variational method, functional, eigenfunction, eigenvalue, Dirichlet boundary condition, the function $\sin((x-\pi)^2/\pi)$, the function $\cos(4x)$, nonisosceles triangle, random search method, Wolfram Research, “Nminimize” procedure, algorithm.
Mots-clés : Sturm–Liouville problem
@article{MZM_2015_97_4_a9,
     author = {M. M. Khapaev and T. M. Khapaeva},
     title = {On the {Computation} of {Eigenfunctions} and {Eigenvalues} in the {Sturm--Liouville} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {604--608},
     publisher = {mathdoc},
     volume = {97},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a9/}
}
TY  - JOUR
AU  - M. M. Khapaev
AU  - T. M. Khapaeva
TI  - On the Computation of Eigenfunctions and Eigenvalues in the Sturm--Liouville Problem
JO  - Matematičeskie zametki
PY  - 2015
SP  - 604
EP  - 608
VL  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a9/
LA  - ru
ID  - MZM_2015_97_4_a9
ER  - 
%0 Journal Article
%A M. M. Khapaev
%A T. M. Khapaeva
%T On the Computation of Eigenfunctions and Eigenvalues in the Sturm--Liouville Problem
%J Matematičeskie zametki
%D 2015
%P 604-608
%V 97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a9/
%G ru
%F MZM_2015_97_4_a9
M. M. Khapaev; T. M. Khapaeva. On the Computation of Eigenfunctions and Eigenvalues in the Sturm--Liouville Problem. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 604-608. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a9/

[1] L. D. Akulenko, S. V. Nesterov, “Effektivnyi metod issledovaniya kolebanii suschestvenno neodnorodnykh raspredelennykh sistem”, Prikl. matem. mekh., 61:3 (1997), 466–478 | MR | Zbl

[2] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Appl. Math. Sci., 120, Springer, New York, 2011 | MR | Zbl