On the Computation of Eigenfunctions and Eigenvalues in the Sturm–Liouville Problem
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 604-608
Cet article a éte moissonné depuis la source Math-Net.Ru
We present the variational method for finding the eigenfunctions and eigenvalues in the Sturm–Liouville problem with Dirichlet boundary conditions; the method is based on the proposed functional. As a test example, we consider the potential $\cos(4x)$. Also computations for two functions $\sin((x-\pi)^2/\pi)$ and a high nonisosceles triangle are given.
Keywords:
variational method, functional, eigenfunction, eigenvalue, Dirichlet boundary condition, the function $\sin((x-\pi)^2/\pi)$, the function $\cos(4x)$, nonisosceles triangle, random search method, Wolfram Research, “Nminimize” procedure, algorithm.
Mots-clés : Sturm–Liouville problem
Mots-clés : Sturm–Liouville problem
@article{MZM_2015_97_4_a9,
author = {M. M. Khapaev and T. M. Khapaeva},
title = {On the {Computation} of {Eigenfunctions} and {Eigenvalues} in the {Sturm{\textendash}Liouville} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {604--608},
year = {2015},
volume = {97},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a9/}
}
M. M. Khapaev; T. M. Khapaeva. On the Computation of Eigenfunctions and Eigenvalues in the Sturm–Liouville Problem. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 604-608. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a9/
[1] L. D. Akulenko, S. V. Nesterov, “Effektivnyi metod issledovaniya kolebanii suschestvenno neodnorodnykh raspredelennykh sistem”, Prikl. matem. mekh., 61:3 (1997), 466–478 | MR | Zbl
[2] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Appl. Math. Sci., 120, Springer, New York, 2011 | MR | Zbl