On the Norms of Favard Kernels
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 583-590.

Voir la notice de l'article provenant de la source Math-Net.Ru

For Favard kernels, which are used to construct polynomials of best approximation for classes of periodic differentiable functions $W^r$, we obtain exact values of their norms as simple finite sums for odd $r$ and lower bounds for the norms for even $r$. Similar results are also obtained for the norms of the adjoint Favard kernels.
Mots-clés : Favard kernel, Favard sum
Keywords: polynomial of best approximation, function class $W^r$, Kolmogorov width.
@article{MZM_2015_97_4_a7,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {On the {Norms} of {Favard} {Kernels}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {583--590},
     publisher = {mathdoc},
     volume = {97},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a7/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
TI  - On the Norms of Favard Kernels
JO  - Matematičeskie zametki
PY  - 2015
SP  - 583
EP  - 590
VL  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a7/
LA  - ru
ID  - MZM_2015_97_4_a7
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%T On the Norms of Favard Kernels
%J Matematičeskie zametki
%D 2015
%P 583-590
%V 97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a7/
%G ru
%F MZM_2015_97_4_a7
Yu. N. Subbotin; S. A. Telyakovskii. On the Norms of Favard Kernels. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 583-590. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a7/

[1] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, M., Nauka, 1976 | MR

[2] Yu. N. Subbotin, S. A. Telyakovskii, “Utochnenie otsenok otnositelnykh poperechnikov klassov differentsiruemykh funktsii”, Teoriya funktsii i differentsialnye uravneniya, Tr. MIAN, 269, MAIK, M., 2010, 242–253 | MR | Zbl

[3] A. S. Belov, “O primerakh trigonometricheskikh ryadov s neotritsatelnymi chastnymi summami”, Matem. sb., 186:4 (1995), 21–46 | MR | Zbl

[4] L. Vietoris, “Über das Vorzeichen gewisser trigonometrischer Summen”, Österr. Akad. Wiss. Math.-natur. Kl. Sitzungsber. Abt. II, 167 (1958), 125–135 | Zbl

[5] S. B. Stechkin, “O priblizhenii nepreryvnykh periodicheskikh funktsii summami Favara”, Priblizhenie periodicheskikh funktsii, Tr. MIAN SSSR, 109, 1971, 26–34 | MR | Zbl

[6] S. B. Stechkin, “Zamechanie k teoreme Dzheksona”, Priblizhenie funktsii v srednem, Tr. MIAN SSSR, 88, 1967, 17–19 | MR | Zbl

[7] N. I. Akhiezer, Lektsii po teorii approksimatsii, M., Nauka, 1965 | MR