Mixed Abelian Groups with Isomorphic Endomorphism Semigroups
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 556-565.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, mixed Abelian groups with isomorphic endomorphism semigroups are studied. In particular, we characterize the groups whose periodic parts are nonisomorphic, while their endomorphism semigroups are isomorphic. A description of nonreduced split mixed Abelian groups with $UA$-rings of endomorphisms is obtained.
Keywords: mixed Abelian group, endomorphism semigroup, $UA$-ring of endomorphisms.
@article{MZM_2015_97_4_a5,
     author = {O. V. Ljubimtsev and D. S. Chistyakov},
     title = {Mixed {Abelian} {Groups} with {Isomorphic} {Endomorphism} {Semigroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {556--565},
     publisher = {mathdoc},
     volume = {97},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a5/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
AU  - D. S. Chistyakov
TI  - Mixed Abelian Groups with Isomorphic Endomorphism Semigroups
JO  - Matematičeskie zametki
PY  - 2015
SP  - 556
EP  - 565
VL  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a5/
LA  - ru
ID  - MZM_2015_97_4_a5
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%A D. S. Chistyakov
%T Mixed Abelian Groups with Isomorphic Endomorphism Semigroups
%J Matematičeskie zametki
%D 2015
%P 556-565
%V 97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a5/
%G ru
%F MZM_2015_97_4_a5
O. V. Ljubimtsev; D. S. Chistyakov. Mixed Abelian Groups with Isomorphic Endomorphism Semigroups. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 556-565. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a5/

[1] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 ; Л. Фукс, Бесконечные абелевы группы, Т. 2, Мир, М., 1977 | MR | Zbl | MR | Zbl

[2] A. M. Sebeldin, “Abelevy gruppy s izomorfnymi polugruppami endomorfizmov”, UMN, 49:6 (1994), 211–212 | MR | Zbl

[3] A. M. Sebeldin, “Abelevy gruppy nekotorykh klassov s izomorfnymi koltsami endomorfizmov”, UMN, 50:1 (1995), 207–208 | MR | Zbl

[4] P. Puusemp, “Ob opredelyaemosti periodicheskoi abelevoi gruppy svoei polugruppoi endomorfizmov v klasse vsekh grupp”, Izv. AN Estonskoi SSR. Fiz. Matem., 29:3 (1980), 241–245 | MR | Zbl

[5] P. Puusemp, “Ob opredelyaemosti periodicheskoi abelevoi gruppy svoei polugruppoi endomorfizmov v klasse vsekh periodicheskikh abelevykh grupp”, Izv. AN Estonskoi SSR. Fiz. Matem., 29:3 (1980), 246–253 | MR | Zbl

[6] W. May, E. Toubassi, “Endomorphisms of Abelian groups and the theorem of Baer and Kaplansky”, J. Algebra, 43:1 (1976), 1–13 | DOI | MR | Zbl

[7] A. V. Mikhalev, “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135:2 (1988), 210–224 | MR | Zbl

[8] W. Stephenson, “Unique addition rings”, Canad. J. Math., 21 (1969), 1455–1461 | DOI | MR | Zbl

[9] O. V. Lyubimtsev, “Separabelnye abelevy gruppy bez krucheniya s $UA$-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[10] O. V. Lyubimtsev, “Periodicheskie abelevy gruppy s $UA$-koltsami endomorfizmov”, Matem. zametki, 70:5 (2001), 736–741 | DOI | MR | Zbl

[11] D. S. Chistyakov, O. V. Lyubimtsev, “Ob abelevykh gruppakh bez krucheniya s $UA$-koltsom endomorfizmov”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2011, no. 2, 55–58

[12] P. A. Krylov, A. V. Mikhalev, A. A. Tuganbaev, Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial press, M., 2006