Mixed Abelian Groups with Isomorphic Endomorphism Semigroups
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 556-565 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, mixed Abelian groups with isomorphic endomorphism semigroups are studied. In particular, we characterize the groups whose periodic parts are nonisomorphic, while their endomorphism semigroups are isomorphic. A description of nonreduced split mixed Abelian groups with $UA$-rings of endomorphisms is obtained.
Keywords: mixed Abelian group, endomorphism semigroup, $UA$-ring of endomorphisms.
@article{MZM_2015_97_4_a5,
     author = {O. V. Ljubimtsev and D. S. Chistyakov},
     title = {Mixed {Abelian} {Groups} with {Isomorphic} {Endomorphism} {Semigroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {556--565},
     year = {2015},
     volume = {97},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a5/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
AU  - D. S. Chistyakov
TI  - Mixed Abelian Groups with Isomorphic Endomorphism Semigroups
JO  - Matematičeskie zametki
PY  - 2015
SP  - 556
EP  - 565
VL  - 97
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a5/
LA  - ru
ID  - MZM_2015_97_4_a5
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%A D. S. Chistyakov
%T Mixed Abelian Groups with Isomorphic Endomorphism Semigroups
%J Matematičeskie zametki
%D 2015
%P 556-565
%V 97
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a5/
%G ru
%F MZM_2015_97_4_a5
O. V. Ljubimtsev; D. S. Chistyakov. Mixed Abelian Groups with Isomorphic Endomorphism Semigroups. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 556-565. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a5/

[1] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 ; Л. Фукс, Бесконечные абелевы группы, Т. 2, Мир, М., 1977 | MR | Zbl | MR | Zbl

[2] A. M. Sebeldin, “Abelevy gruppy s izomorfnymi polugruppami endomorfizmov”, UMN, 49:6 (1994), 211–212 | MR | Zbl

[3] A. M. Sebeldin, “Abelevy gruppy nekotorykh klassov s izomorfnymi koltsami endomorfizmov”, UMN, 50:1 (1995), 207–208 | MR | Zbl

[4] P. Puusemp, “Ob opredelyaemosti periodicheskoi abelevoi gruppy svoei polugruppoi endomorfizmov v klasse vsekh grupp”, Izv. AN Estonskoi SSR. Fiz. Matem., 29:3 (1980), 241–245 | MR | Zbl

[5] P. Puusemp, “Ob opredelyaemosti periodicheskoi abelevoi gruppy svoei polugruppoi endomorfizmov v klasse vsekh periodicheskikh abelevykh grupp”, Izv. AN Estonskoi SSR. Fiz. Matem., 29:3 (1980), 246–253 | MR | Zbl

[6] W. May, E. Toubassi, “Endomorphisms of Abelian groups and the theorem of Baer and Kaplansky”, J. Algebra, 43:1 (1976), 1–13 | DOI | MR | Zbl

[7] A. V. Mikhalev, “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135:2 (1988), 210–224 | MR | Zbl

[8] W. Stephenson, “Unique addition rings”, Canad. J. Math., 21 (1969), 1455–1461 | DOI | MR | Zbl

[9] O. V. Lyubimtsev, “Separabelnye abelevy gruppy bez krucheniya s $UA$-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[10] O. V. Lyubimtsev, “Periodicheskie abelevy gruppy s $UA$-koltsami endomorfizmov”, Matem. zametki, 70:5 (2001), 736–741 | DOI | MR | Zbl

[11] D. S. Chistyakov, O. V. Lyubimtsev, “Ob abelevykh gruppakh bez krucheniya s $UA$-koltsom endomorfizmov”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2011, no. 2, 55–58

[12] P. A. Krylov, A. V. Mikhalev, A. A. Tuganbaev, Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial press, M., 2006