Arithmetic Complexity of Certain Linear Transformations
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 529-555
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain order-sharp quadratic and slightly higher estimates of the computational complexity of certain linear transformations (binomial, Stirling, Lah, Gauss, Serpiński, Sylvester) in the basis $\{x+y \}\cup \{ax: \vert a \vert \leq C \}$ consisting of the operations of addition and inner multiplication by a bounded constant as well as upper bounds $O(n\log n)$ for the computational complexity in the basis $\{ax+by: a,b \in {\mathbb R}\}$ consisting of all linear functions. Lower bounds of the form $\Omega(n\log n)$ are obtained for the basis consisting of all monotone linear functions $\{ax+by: a, b > 0\}$. For the finite arithmetic basis $B_{+,*,/} = \{x\pm y,xy,1/x,1\}$ and for the bases $\{x\pm y\} \cup \{nx: n \in {\mathbb N}\}\cup \{x/n: n \in {\mathbb N}\}$ and $B_{+,*}=\{x+y,xy,-1\}$, estimates $O(n \log n \log \log n)$ are obtained in certain cases. In the case of a field of characteristic $p$, computations in the basis $\{x+y \operatorname{mod} p\}$ are also considered.
Mots-clés :
linear transformation (binomial, Gauss
Keywords: Stirling, Lah, Serpiński, Sylvester), arithmetic computational complexity of linear transformations, finite arithmetic basis, field of characteristic $p$,.
Keywords: Stirling, Lah, Serpiński, Sylvester), arithmetic computational complexity of linear transformations, finite arithmetic basis, field of characteristic $p$,.
@article{MZM_2015_97_4_a4,
author = {S. B. Gashkov},
title = {Arithmetic {Complexity} of {Certain} {Linear} {Transformations}},
journal = {Matemati\v{c}eskie zametki},
pages = {529--555},
publisher = {mathdoc},
volume = {97},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a4/}
}
S. B. Gashkov. Arithmetic Complexity of Certain Linear Transformations. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 529-555. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a4/