Injectors in Fitting Sets of Finite Groups
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 516-528.

Voir la notice de l'article provenant de la source Math-Net.Ru

A set of subgroups $\mathscr F$ of a finite group $G$ is referred to as a Fitting set if it is closed with respect to taking normal subgroups, products of normal $\mathscr F$-subgroups, and inner automorphisms of $G$. A Fitting set $\mathscr F$ of a group $G$ is said to be $\pi$-saturated if $H\in\mathscr F$ for every subgroup $H$ in $G$ such that $O^{\pi'}(H)\in\mathscr F$. In the paper, it is proved that, if $\mathscr F$ is a $\pi$-saturated Fitting set of a $\pi$-solvable group $G$, then there are $\mathscr F$-injectors in $G$ and every two of them are conjugate.
Keywords: finite group, Fitting set, $\pi$-saturated Fitting set.
Mots-clés : $\pi$-solvable group
@article{MZM_2015_97_4_a3,
     author = {N. T. Vorob'ev and M. G. Semenov},
     title = {Injectors in {Fitting} {Sets} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {516--528},
     publisher = {mathdoc},
     volume = {97},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a3/}
}
TY  - JOUR
AU  - N. T. Vorob'ev
AU  - M. G. Semenov
TI  - Injectors in Fitting Sets of Finite Groups
JO  - Matematičeskie zametki
PY  - 2015
SP  - 516
EP  - 528
VL  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a3/
LA  - ru
ID  - MZM_2015_97_4_a3
ER  - 
%0 Journal Article
%A N. T. Vorob'ev
%A M. G. Semenov
%T Injectors in Fitting Sets of Finite Groups
%J Matematičeskie zametki
%D 2015
%P 516-528
%V 97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a3/
%G ru
%F MZM_2015_97_4_a3
N. T. Vorob'ev; M. G. Semenov. Injectors in Fitting Sets of Finite Groups. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 516-528. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a3/

[1] B. Fischer, W. Gaschütz, B. Hartley, “Injektoren endlicher auflösbarer Gruppen”, Math. Z., 102:5 (1967), 337–339 | DOI | MR | Zbl

[2] L. A. Shemetkov, “O podgruppakh $\pi$-razreshimykh grupp”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1975, 207–212 | MR | Zbl

[3] W. Anderson, “Injectors in finite solvable groups”, J. Algebra, 36:3 (1975), 333–338 | DOI | MR | Zbl

[4] K. Doerk, T. Hawkes, Finite Soluble Groups, de Gruyter Exp. Math., 4, Walter de Gruyter, Berlin, 1992 | MR | Zbl

[5] L. A. Shemetkov, Formatsii konechnykh grupp, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl

[6] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Math. Appl. (Springer), 584, Springer, Dordrecht, 2006 | MR | Zbl

[7] I. Hawthorn, “The existence and uniqueness of injectors for fitting sets of solvable groups”, Proc. Amer. Math. Soc., 126:8 (1998), 2229–2230 | DOI | MR | Zbl

[8] P. A. Golberg, “Khollovskie $\theta$-bazy konechnykh grupp”, Izv. vuzov. Matem., 1961, no. 1, 36–43 | MR | Zbl

[9] S. N. Vorobev, E. N. Zalesskaya, “Ob analoge gipotezy Shemetkova dlya klassov Fishera konechnykh grupp”, Sib. matem. zhurn., 54:5 (2013), 989–999 | MR | Zbl

[10] W. Guo, “Injector of finite groups”, Chinese Ann. Math. Ser. A, 18:2 (1997), 145–148 | MR | Zbl

[11] V. G. Sementovskii, “In'ektory konechnykh grupp”, Issledovanie normalnogo i podgruppovogo stroeniya konechnykh grupp, Nauka i tekhnika, Minsk, 1984, 166–170 | MR | Zbl

[12] W. Guo, N. T. Vorob'ev, “On injectors of finite soluble groups”, Comm. Algebra, 36:9 (2008), 3200–3208 | DOI | MR | Zbl

[13] Y. Liu, W. Guo, N. T. Vorob'ev, “Description of $\mathfrak F$-injectors of Finite Soluble Groups”, Math. Sci. Res. J., 12:1 (2008), 17–22 | MR | Zbl