Fourier Coefficients of Characteristic Functions of Intervals with Respect to a Complete Orthonormal System Bounded in~$L^p([0,1])$, $2$
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 632-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: complete orthonormal system, characteristic functions of intervals, Haar system, the spaces $L^p([0,1])$, $2
Mots-clés : Fourier coefficients
@article{MZM_2015_97_4_a13,
     author = {A. V. Meleshkina},
     title = {Fourier {Coefficients} of {Characteristic} {Functions} of {Intervals} with {Respect} to a {Complete} {Orthonormal} {System} {Bounded} in~$L^p([0,1])$, $2<p<\infty$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {632--635},
     publisher = {mathdoc},
     volume = {97},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a13/}
}
TY  - JOUR
AU  - A. V. Meleshkina
TI  - Fourier Coefficients of Characteristic Functions of Intervals with Respect to a Complete Orthonormal System Bounded in~$L^p([0,1])$, $2
JO  - Matematičeskie zametki
PY  - 2015
SP  - 632
EP  - 635
VL  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a13/
LA  - ru
ID  - MZM_2015_97_4_a13
ER  - 
%0 Journal Article
%A A. V. Meleshkina
%T Fourier Coefficients of Characteristic Functions of Intervals with Respect to a Complete Orthonormal System Bounded in~$L^p([0,1])$, $2
%J Matematičeskie zametki
%D 2015
%P 632-635
%V 97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a13/
%G ru
%F MZM_2015_97_4_a13
A. V. Meleshkina. Fourier Coefficients of Characteristic Functions of Intervals with Respect to a Complete Orthonormal System Bounded in~$L^p([0,1])$, $2
                  
                

[1] S. V. Bochkarev, Dokl. AN SSSR, 202:5 (1972), 995–997 | MR | Zbl

[2] S. V. Bochkarev, Matem. zametki, 15:3 (1974), 363–370 | MR | Zbl

[3] B. S. Kashin, Matem. sb., 106:3 (1978), 380–385 | MR | Zbl

[4] B. S. Kashin, “On lower estimates for $n$-term approximation in Hilbert spaces”, Approximation theory, DARBA, Sofia, 2002, 241–257 | MR | Zbl

[5] B. S. Kashin, A. V. Meleshkina, Matem. zametki, 95:6 (2014), 830–835 | DOI

[6] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl