Dirichlet Problem for Second-Order Ordinary Differential Equations with Segment-Order Derivative
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 620-628.

Voir la notice de l'article provenant de la source Math-Net.Ru

The fundamental solution of a second-order ordinary differential equation with segment-order derivative is constructed. The Green function of the Dirichlet problem is determined on the basis the fundamental solution and the solution of the Dirichlet problem for the equation under study is obtained under the solvability condition.
Keywords: second-order ordinary differential equation, Dirichlet problem, segment-order derivative, Green function, fundamental solution, Euler gamma function.
@article{MZM_2015_97_4_a11,
     author = {B. I. Efendiev},
     title = {Dirichlet {Problem} for {Second-Order} {Ordinary} {Differential} {Equations} with {Segment-Order} {Derivative}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {620--628},
     publisher = {mathdoc},
     volume = {97},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a11/}
}
TY  - JOUR
AU  - B. I. Efendiev
TI  - Dirichlet Problem for Second-Order Ordinary Differential Equations with Segment-Order Derivative
JO  - Matematičeskie zametki
PY  - 2015
SP  - 620
EP  - 628
VL  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a11/
LA  - ru
ID  - MZM_2015_97_4_a11
ER  - 
%0 Journal Article
%A B. I. Efendiev
%T Dirichlet Problem for Second-Order Ordinary Differential Equations with Segment-Order Derivative
%J Matematičeskie zametki
%D 2015
%P 620-628
%V 97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a11/
%G ru
%F MZM_2015_97_4_a11
B. I. Efendiev. Dirichlet Problem for Second-Order Ordinary Differential Equations with Segment-Order Derivative. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 620-628. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a11/

[1] A. M. Nakhushev, “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differents. uravneniya, 34:1 (1998), 101–109 | MR | Zbl

[2] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[3] V. Volterra, Teoriya funktsionalov, integralnykh i integrodifferentsialnykh uravnenii, Nauka, M., 1982 | MR | Zbl

[4] A. M. Nakhushev, “O nepreryvnykh differentsialnykh uravneniyakh i ikh raznostnykh analogakh”, Dokl. AN SSSR, 300:4 (1988), 796–799 | MR | Zbl

[5] J. H. Barrett, “Differential equations of non-integer order”, Canad. J. Math., 6:4 (1954), 529–541 | DOI | MR | Zbl

[6] M. M. Dzhrbashyan, A. B. Nersesyan, “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Armyanskoi SSR, 3:1 (1968), 3–29 | MR | Zbl

[7] A. V. Pskhu, “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Matem. sb., 202:4 (2011), 111–122 | DOI | MR | Zbl

[8] L. Kh. Gadzova, “Obobschennaya zadacha Dirikhle dlya lineinogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Differents. uravneniya, 50:1 (2014), 121–125 | DOI | Zbl

[9] A. M. Nakhushev, “Zadacha Shturma–Liuvillya dlya differentsialnogo uravneniya vtorogo poryadka s drobnymi proizvodnymi v mladshikh chlenakh”, DAN SSSR, 234:2 (1977), 308–311 | Zbl

[10] A. V. Pskhu, “O veschestvennykh nulyakh funktsii tipa Mittag-Lefflera”, Matem. zametki, 77:4 (2005), 592–599 | DOI | MR | Zbl

[11] A. Yu. Popov, “O kolichestve veschestvennykh sobstvennykh znachenii odnoi kraevoi zadachi dlya uravneniya vtorogo poryadka s drobnoi proizvodnoi”, Fundament. i prikl. matem., 12:6 (2006), 137–155 | MR | Zbl

[12] A. Yu. Popov, A. M. Sedletskii, “Raspredelenie kornei funktsii Mittag-Lefflera”, Teoriya funktsii, SMFN, 40, RUDN, M., 2011, 3–171 | MR | Zbl

[13] A. I. Markushevich, Teoriya analiticheskikh funktsii, GITTL, M., 1950 | MR | Zbl

[14] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl

[15] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR | Zbl

[16] A. V. Pskhu, “Fundamentalnoe reshenie obyknovennogo differentsialnogo uravneniya kontinualnogo poryadka”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi AN, 9:1 (2007), 30–36

[17] A. G. Sveshnikov, A. N. Tikhonov, Teoriya funktsii kompleksnoi peremennoi, Kurs vysshei matematiki i matematicheskoi fiziki, 4, Nauka, M., 1967 | MR | Zbl