Reduction of Nonlocal Pseudodifferential Operators on a Noncompact Manifold to Classical Pseudodifferential Operators on a Double-Dimensional Compact Manifold
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 493-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we obtain some Fredholmness criteria and a formula for the index of nonlocal pseudodifferential operators generated by shifts and multiplications by periodic functions and acting in the Schwartz space $\mathcal{S}(\mathbb{R}^n)$. These results significantly differ from the results known to the author in this field of study, namely, the Fredholmness criteria and the formula for the index of nonlocal pseudodifferential operators acting over the noncompact manifold $\mathbb{R}^n$ are obtained here for the first time.
Keywords: nonlocal pseudodifferential operator, Fredholmness criterion, index of elliptic pseudodifferential operators, Schwartz space.
@article{MZM_2015_97_4_a1,
     author = {A. A. Arutyunov},
     title = {Reduction of {Nonlocal} {Pseudodifferential} {Operators} on a {Noncompact} {Manifold} to {Classical} {Pseudodifferential} {Operators} on a {Double-Dimensional} {Compact} {Manifold}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {493--502},
     publisher = {mathdoc},
     volume = {97},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a1/}
}
TY  - JOUR
AU  - A. A. Arutyunov
TI  - Reduction of Nonlocal Pseudodifferential Operators on a Noncompact Manifold to Classical Pseudodifferential Operators on a Double-Dimensional Compact Manifold
JO  - Matematičeskie zametki
PY  - 2015
SP  - 493
EP  - 502
VL  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a1/
LA  - ru
ID  - MZM_2015_97_4_a1
ER  - 
%0 Journal Article
%A A. A. Arutyunov
%T Reduction of Nonlocal Pseudodifferential Operators on a Noncompact Manifold to Classical Pseudodifferential Operators on a Double-Dimensional Compact Manifold
%J Matematičeskie zametki
%D 2015
%P 493-502
%V 97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a1/
%G ru
%F MZM_2015_97_4_a1
A. A. Arutyunov. Reduction of Nonlocal Pseudodifferential Operators on a Noncompact Manifold to Classical Pseudodifferential Operators on a Double-Dimensional Compact Manifold. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 493-502. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a1/

[1] I. M. Gelfand, “Ob ellipticheskikh uravneniyakh”, UMN, 15:3 (1960), 121–132 | MR | Zbl

[2] M. F. Atiyah, I. M. Singer, “The index of elliptic operators on compact manifolds”, Bull. Amer. Math. Soc., 69 (1963), 422–433 | DOI | MR | Zbl

[3] A. B. Antonevich, “Ellipticheskie psevdodifferentsialnye operatory s konechnoi gruppoi sdvigov”, Izv. AN SSSR. Ser. matem., 37:3 (1973), 663–675 | MR | Zbl

[4] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry. Nonlocal Elliptic Operators, Oper. Theory Adv. Appl., 183, Birkhäuser Verlag, Basel, 2008 | MR | Zbl

[5] A. A. Arutyunov, A. S. Mischenko, “Reduktsiya PDO ischisleniya na nekompaktnom mnogoobrazii k kompaktnomu mnogoobraziyu udvoennoi razmernosti”, Dokl. RAN, 451:4 (2013), 369–373 | DOI | Zbl

[6] A. A. Arutyunov, A. S. Mischenko, “Reduktsiya ischisleniya psevdodifferentsialnykh operatorov na nekompaktnom mnogoobrazii k ischisleniyu na kompaktnom mnogoobrazii udvoennoi razmernosti”, Matem. zametki, 94:4 (2013), 488–505 | DOI | MR | Zbl

[7] F. Nicola, L. Rodino, Global Pseudo-Differential Calculus on Euclidian Spaces, Pseudo Diff. Oper., 4, Birkhäuser Verlag, Basel, 2010 | MR

[8] F. Nicola, “$K$-Theory of $\mathrm SG$-pseudo-differential algebras”, Proc. Amer. Math. Soc., 131:9 (2003), 2841–2848 | DOI | MR | Zbl

[9] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Dobrosvet, 2003 | MR | Zbl

[10] M. S. Agranovich, “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Differentsialnye uravneniya s chastnymi proizvodnymi – 6, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 63, VINITI, M., 1990, 5–129 | MR | Zbl

[11] A. S. Mischenko, Vektornye rassloeniya i ikh primeneniya, Nauka, M., 1984 | MR | Zbl

[12] V. A. Zorich, Matematicheskii analiz, T. II, MTsNMO, M., 2002

[13] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[14] V. Rabinbovich, S. Roch, B. Silbermann, Limit Operators and Their Applications in Operator Theory, Oper. Theory Adv. Appl., 150, Birkhäuser Verlag, Basel, 2004 | MR | Zbl