Sets of Uniqueness for Harmonic and Analytic Functions and Inverse Problems for Wave Equations
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 397-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several examples of one-dimensional analytic sets of uniqueness for harmonic functions on the sphere in $\mathbb{R}^3$ are given and some examples of analytic sets on the sphere in $\mathbb{R}^n$ which cannot contain sets of uniqueness are presented. Analytic curves which are sets of uniqueness for real-analytic functions in $\mathbb{R}^n$, $n \ge 3$, are constructed. The obtained results are used to justify the inhomogeneity sounding schemes when the inverse problem of acoustic scattering is solved under the conditions that the source and detector coordinates coincide.
Keywords: inhomogeneity sounding, set of uniqueness, inverse scattering problem, acoustic sounding scheme.
@article{MZM_2015_97_3_a7,
     author = {M. Yu. Kokurin},
     title = {Sets of {Uniqueness} for {Harmonic} and {Analytic} {Functions} and {Inverse} {Problems} for {Wave} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {397--406},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a7/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Sets of Uniqueness for Harmonic and Analytic Functions and Inverse Problems for Wave Equations
JO  - Matematičeskie zametki
PY  - 2015
SP  - 397
EP  - 406
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a7/
LA  - ru
ID  - MZM_2015_97_3_a7
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Sets of Uniqueness for Harmonic and Analytic Functions and Inverse Problems for Wave Equations
%J Matematičeskie zametki
%D 2015
%P 397-406
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a7/
%G ru
%F MZM_2015_97_3_a7
M. Yu. Kokurin. Sets of Uniqueness for Harmonic and Analytic Functions and Inverse Problems for Wave Equations. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 397-406. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a7/

[1] A. B. Bakushinskii, M. Yu. Kokurin, Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002

[2] V. G. Romanov, “Teoremy edinstvennosti dlya nekotorykh obratnykh zadach”, Dokl. RAN, 380:5 (2001), 596–598 | MR | Zbl

[3] V. G. Romanov, Ustoichivost v obratnykh zadachakh, Nauchnyi Mir, M., 2005 | MR | Zbl

[4] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR | Zbl

[5] M. M. Lavrentev, “Ob odnom klasse obratnykh zadach dlya differentsialnykh uravnenii”, Dokl. AN SSSR, 160:1 (1965), 32–35 | MR | Zbl

[6] A. G. Ramm, Mnogomernye obratnye zadachi rasseyaniya, Mir, M., 1994 | MR | Zbl

[7] M. Yu. Kokurin, S. K. Paimerov, “Ob obratnoi koeffitsientnoi zadache dlya volnovogo uravneniya v ogranichennoi oblasti”, Zh. vychisl. matem. i matem. fiz., 48:1 (2008), 115–126 | MR | Zbl

[8] M. Yu. Kokurin, “O korrelyatsionnom metode issledovaniya sluchainykh volnovykh polei”, Sib. zhurn. industr. matem., 14:4 (2011), 24–31 | MR

[9] S. G. Krantz, H. R. Parks, A Primer of Real Analytic Functions, Birkhäuser Boston, Boston, MA, 2002 | MR | Zbl

[10] A. I. Yanushauskas, Analiticheskie i garmonicheskie funktsii mnogikh peremennykh, Nauka, Novosibirsk, 1981 | MR | Zbl

[11] M. Yu. Kokurin, “On a multidimensional integral equation with data supported by low–dimensional analytic manifolds”, J. Inverse Ill-Posed Probl., 21:1 (2013), 125–140 | DOI | MR | Zbl

[12] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR | Zbl

[13] D. Khavinson, Holomorphic Partial Differential Equations and Classical Potential Theory, Universidad de La Laguna, La Laguna, 1996 | MR

[14] D. Khavinson, H. S. Shapiro, “Dirichlet's problem when the data is an entire function”, Bull. London Math. Soc., 24:5 (1992), 456–468 | DOI | MR | Zbl

[15] D. Khavinson, H. S. Shapiro, “On a uniqueness property of harmonic functions”, Comput. Methods Funct. Theory, 8:1 (2008), 143–150 | DOI | MR | Zbl

[16] B. V. Shabat, Vvedenie v kompleksnyi analiz. Ch. 2. Funktsii neskolkikh peremennykh, Nauka, M., 1976 | MR | Zbl

[17] U. Rudin, Teoriya funktsii v polikruge, Mir, M., 1974 | MR | Zbl