Self-Adjoint Commuting Differential Operators of Rank~2 and Their Deformations Given by Soliton Equations
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 350-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

Deformations of commutative rings of self-adjoint ordinary differential operators of rank 2 given by soliton equations are studied.
Keywords: differential operator of rank 2, commutative ring, Tyurin parameter, Krichever–Novikov hierarchy, Krichever–Novikov equation, Korteweg–de Vries equation, Baker–Akhiezer function, Kadomtsev–Petviashvili equation.
Mots-clés : soliton equation
@article{MZM_2015_97_3_a3,
     author = {V. N. Davletshina},
     title = {Self-Adjoint {Commuting} {Differential} {Operators} of {Rank~2} and {Their} {Deformations} {Given} by {Soliton} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--358},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a3/}
}
TY  - JOUR
AU  - V. N. Davletshina
TI  - Self-Adjoint Commuting Differential Operators of Rank~2 and Their Deformations Given by Soliton Equations
JO  - Matematičeskie zametki
PY  - 2015
SP  - 350
EP  - 358
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a3/
LA  - ru
ID  - MZM_2015_97_3_a3
ER  - 
%0 Journal Article
%A V. N. Davletshina
%T Self-Adjoint Commuting Differential Operators of Rank~2 and Their Deformations Given by Soliton Equations
%J Matematičeskie zametki
%D 2015
%P 350-358
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a3/
%G ru
%F MZM_2015_97_3_a3
V. N. Davletshina. Self-Adjoint Commuting Differential Operators of Rank~2 and Their Deformations Given by Soliton Equations. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 350-358. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a3/

[1] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6 (1980), 47–68 | MR | Zbl

[2] I. M. Krichever, S. P. Novikov, “Dvumerizovannaya tsepochka Tody, kommutiruyuschie raznostnye operatory i golomorfnye rassloeniya”, UMN, 58:3 (2003), 51–88 | DOI | MR | Zbl

[3] V. G. Drinfeld, V. V. Sokolov, “Simmetrii v uravneniyakh Laksa”, Integriruemye sistemy, ed. A. B. Shabat, Ufa, 1982

[4] I. M. Krichever, “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 12:3 (1978), 20–31 | MR | Zbl

[5] P. Dehornoy, “Operateurs differentiels et courbes elliptiques”, Compositio Math., 43:1 (1981), 71–99 | MR | Zbl

[6] P. G. Grinevich, “Ratsionalnye resheniya uravnenii kommutatsii differentsialnykh operatorov”, Funkts. analiz i ego pril., 16:1 (1982), 19–24 | MR | Zbl

[7] P. G. Grinevich, S. P. Novikov, “O spektralnoi teorii kommutiruyuschikh operatorov ranga 2 s periodicheskimi koeffitsientami”, Funkts. analiz i ego pril., 16:1 (1982), 25–26 | MR | Zbl

[8] F. A. Grünbaum, “Commuting pairs of linear ordinary differential operators of orders four and six”, Phis. D, 31:3 (1988), 424–433 | MR | Zbl

[9] G. A. Latham, “Rank 2 commuting ordinary differential operators and Darboux conjugates of KdV”, Appl. Math. Lett, 8:6 (1995), 73–78 | MR | Zbl

[10] G. Latham, E. Previato, “Darboux transformations for higher-rank Kadomtsev–Petviashvili and Krichever–Novikov equations”, Acta Appl. Math., 39:1-3 (1995), 405–433 | DOI | MR | Zbl

[11] E. Previato, “Seventy years of spectral curves: 1923–1993”, Integrable Systems at Quantum Groups, Lecture Notes in Math., 1620, Springer-Verlag, Berlin, 1996, 419–481 | DOI | MR | Zbl

[12] E. Previato, G. Wilson, “Differential operators and rank 2 bundles over elliptic curves”, Compositio Math., 81:1 (1992), 107–119 | MR | Zbl

[13] O. I. Mokhov, “Kommutiruyuschie differentsialnye operatory ranga 3 i nelineinye uravneniya”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1291–1315 | MR | Zbl

[14] V. N. Davletshina, “O samosopryazhennykh kommutiruyuschikh differentsialnykh operatorakh ranga dva”, Sib. elektron. matem. izv., 10 (2013), 109–112 | MR

[15] A. E. Mironov, “Self-adjoint commuting ordinary differential operators”, Invent. Math., 197:2 (2014), 417–431 | DOI | MR | Zbl

[16] A. E. Mironov, “Periodic and rapid decay rank two self-adjoint commuting differential operators”, Amer. Math. Soc. Transl. Ser. 2, 234 (2014), 309–322

[17] A. E. Mironov, “Ob odnom koltse kommutiruyuschikh differentsialnykh operatorov ranga dva, otvechayuschem krivoi roda dva”, Matem. sb., 195:5 (2004), 103–114 | DOI | MR | Zbl

[18] A. E. Mironov, “Kommutiruyuschie differentsialnye operatory ranga 2, otvechayuschie krivoi roda 2”, Funkts. analiz i ego pril., 39:3 (2005), 91–94 | DOI | MR | Zbl

[19] O. I. Mokhov, “O kommutativnykh podalgebrakh algebr Veilya, svyazannykh s kommutiruyuschimi operatorami proizvolnogo ranga i roda”, Matem. zametki, 94:2 (2013), 314–316 | DOI | MR | Zbl

[20] D. Zuo, “Commuting differential operators of rank 3 associated to a curve of genus 2”, SIGMA, 8 (2012), 044, 11 pp. | DOI | MR

[21] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[22] D. P. Novikov, “Algebro-geometricheskie resheniya uravneniya Krichevera–Novikova”, TMF, 121:3 (1999), 367–373 | DOI | MR | Zbl