Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_3_a14, author = {Yu. V. Matiyasevich}, title = {Yet {Another} {Representation} for {Reciprocals} of the {Nontrivial} {Zeros} of the {Riemann} {Zeta} {Function}}, journal = {Matemati\v{c}eskie zametki}, pages = {471--474}, publisher = {mathdoc}, volume = {97}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a14/} }
TY - JOUR AU - Yu. V. Matiyasevich TI - Yet Another Representation for Reciprocals of the Nontrivial Zeros of the Riemann Zeta Function JO - Matematičeskie zametki PY - 2015 SP - 471 EP - 474 VL - 97 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a14/ LA - ru ID - MZM_2015_97_3_a14 ER -
Yu. V. Matiyasevich. Yet Another Representation for Reciprocals of the Nontrivial Zeros of the Riemann Zeta Function. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 471-474. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a14/
[1] X.-J. Li, J. Number Theory, 65:2 (1997), 325–333 | DOI | MR | Zbl
[2] E. Bombieri, J. C. Lagarias, J. Number Theory, 77:2 (1999), 274–287 | DOI | MR | Zbl
[3] Yu. V. Matiyasevich, Mezhdunarodnaya konferentsiya po analiticheskim metodam v teorii chisel i analize (Moskva, 14–19 sentyabrya 1981 g.), Tr. MIAN SSSR, 163, 1984, 181–182 | MR | Zbl
[4] M. W. Coffey, J. Number Theory, 130:9 (2010), 2049–2064, arXiv: 0912.2391 | DOI | MR | Zbl
[5] Yu. V. Matiyasevich, Matem. zametki, 45:2 (1989), 65–70 | MR | Zbl
[6] J. Sondow, Amer. Math. Monthly, 112:1 (2005), 61–65 | DOI | MR | Zbl
[7] J. Sondow, Additive Number Theory, Springer, New York, 2010, 331–340, arXiv: math/0508042 | MR | Zbl
[8] G. Vacca, Quart. J. Pure Appl. Math., 41 (1910), 363–366 | Zbl
[9] G. H. Hardy, Quart. J. Pure Appl. Math., 43 (1912), 215–216 | Zbl
[10] A. W. Addison, Amer. Math. Monthly, 74:7 (1967), 823–824 | DOI | MR | Zbl
[11] K. H. Pilehrood, T. H. Pilehrood, J. Integer Seq., 13:7 (2010), Article 10.7.3 https://cs.uwaterloo.ca/journals/JIS/VOL13/Pilehrood/pilehrood2.pdf | MR | Zbl