Estimates of the Volume of Solutions of Differential Equations with Hukuhara Derivative
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 440-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of nonlinear differential equations with Hukuhara derivative, lower bounds for the volume of their solutions are obtained. A. D. Aleksandrov's classical inequalities for mixed volumes combined with the comparison method are used.
Keywords: nonlinear differential equation, Hukuhara derivative, volume of solutions of a differential equation, Aleksandrov's inequalities for mixed volumes, Lyapunov function, Hausdorff metric, Steiner's formula, Aumann integral.
@article{MZM_2015_97_3_a11,
     author = {E. V. Ocheretnyuk and V. I. Slyn'ko},
     title = {Estimates of the {Volume} of {Solutions} of {Differential} {Equations} with {Hukuhara} {Derivative}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {440--447},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a11/}
}
TY  - JOUR
AU  - E. V. Ocheretnyuk
AU  - V. I. Slyn'ko
TI  - Estimates of the Volume of Solutions of Differential Equations with Hukuhara Derivative
JO  - Matematičeskie zametki
PY  - 2015
SP  - 440
EP  - 447
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a11/
LA  - ru
ID  - MZM_2015_97_3_a11
ER  - 
%0 Journal Article
%A E. V. Ocheretnyuk
%A V. I. Slyn'ko
%T Estimates of the Volume of Solutions of Differential Equations with Hukuhara Derivative
%J Matematičeskie zametki
%D 2015
%P 440-447
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a11/
%G ru
%F MZM_2015_97_3_a11
E. V. Ocheretnyuk; V. I. Slyn'ko. Estimates of the Volume of Solutions of Differential Equations with Hukuhara Derivative. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 440-447. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a11/

[1] A. A. Tolstonogov, Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl

[2] V. Lakshmikantham, T. G. Bhaskar, J. V. Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Sci. Publ., Cambridge, 2006 | MR | Zbl

[3] L. Stefanini, B. Bede, “Generalized Hukuhara differentiability of interval-valued functions and interval differential equations”, Nonlinear Anal., 71:3-4 (2009), 1311–1328 | MR | Zbl

[4] B. Bede, L. Stefanini, “Solution of fuzzy differential equations with generalized differentiability using LU-parametric representation”, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology and 17th Annual LFA Meeting, Atlantis Press, Amsterdam, 2011, 785–790 | Zbl

[5] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. IV. Smeshannye diskriminanty i smeshannye ob'emy”, Matem. sb., 3:2 (1938), 227–251 | Zbl

[6] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. I. Rasshirenie nekotorykh ponyatii teorii vypuklykh tel”, Matem. sb., 2:5 (1937), 947–972 | Zbl

[7] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. II. Novye neravenstva mezhdu smeshannymi ob'emami i ikh prilozheniya”, Matem. sb., 2:6 (1937), 1205–1238 | Zbl

[8] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. III. Rasprostranenie dvukh teorem Minkovskogo o vypuklykh mnogogrannikakh na proizvolnye vypuklye tela”, Matem. sb., 3:1 (1938), 27–46 | Zbl

[9] N. Rush, P. Abets, M. Lalua, Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980 | MR | Zbl