Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_3_a11, author = {E. V. Ocheretnyuk and V. I. Slyn'ko}, title = {Estimates of the {Volume} of {Solutions} of {Differential} {Equations} with {Hukuhara} {Derivative}}, journal = {Matemati\v{c}eskie zametki}, pages = {440--447}, publisher = {mathdoc}, volume = {97}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a11/} }
TY - JOUR AU - E. V. Ocheretnyuk AU - V. I. Slyn'ko TI - Estimates of the Volume of Solutions of Differential Equations with Hukuhara Derivative JO - Matematičeskie zametki PY - 2015 SP - 440 EP - 447 VL - 97 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a11/ LA - ru ID - MZM_2015_97_3_a11 ER -
E. V. Ocheretnyuk; V. I. Slyn'ko. Estimates of the Volume of Solutions of Differential Equations with Hukuhara Derivative. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 440-447. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a11/
[1] A. A. Tolstonogov, Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl
[2] V. Lakshmikantham, T. G. Bhaskar, J. V. Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Sci. Publ., Cambridge, 2006 | MR | Zbl
[3] L. Stefanini, B. Bede, “Generalized Hukuhara differentiability of interval-valued functions and interval differential equations”, Nonlinear Anal., 71:3-4 (2009), 1311–1328 | MR | Zbl
[4] B. Bede, L. Stefanini, “Solution of fuzzy differential equations with generalized differentiability using LU-parametric representation”, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology and 17th Annual LFA Meeting, Atlantis Press, Amsterdam, 2011, 785–790 | Zbl
[5] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. IV. Smeshannye diskriminanty i smeshannye ob'emy”, Matem. sb., 3:2 (1938), 227–251 | Zbl
[6] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. I. Rasshirenie nekotorykh ponyatii teorii vypuklykh tel”, Matem. sb., 2:5 (1937), 947–972 | Zbl
[7] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. II. Novye neravenstva mezhdu smeshannymi ob'emami i ikh prilozheniya”, Matem. sb., 2:6 (1937), 1205–1238 | Zbl
[8] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. III. Rasprostranenie dvukh teorem Minkovskogo o vypuklykh mnogogrannikakh na proizvolnye vypuklye tela”, Matem. sb., 3:1 (1938), 27–46 | Zbl
[9] N. Rush, P. Abets, M. Lalua, Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980 | MR | Zbl