New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 255-261

Voir la notice de l'article provenant de la source Math-Net.Ru

A new lower bound for the chromatic number $\chi({\mathbb Q}^n)$ of the space ${\mathbb Q}^n$ is obtained.
Keywords: chromatic number, rational space with forbidden distances, Nelson–Hadwiger problem, independence number of a graph, Stirling's formula.
@article{MZM_2015_97_2_a7,
     author = {E. I. Ponomarenko and A. M. Raigorodskii},
     title = {New {Lower} {Bound} for the {Chromatic} {Number} of a {Rational} {Space} with {One} and {Two} {Forbidden} {Distances}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {255--261},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a7/}
}
TY  - JOUR
AU  - E. I. Ponomarenko
AU  - A. M. Raigorodskii
TI  - New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances
JO  - Matematičeskie zametki
PY  - 2015
SP  - 255
EP  - 261
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a7/
LA  - ru
ID  - MZM_2015_97_2_a7
ER  - 
%0 Journal Article
%A E. I. Ponomarenko
%A A. M. Raigorodskii
%T New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances
%J Matematičeskie zametki
%D 2015
%P 255-261
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a7/
%G ru
%F MZM_2015_97_2_a7
E. I. Ponomarenko; A. M. Raigorodskii. New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 255-261. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a7/