New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 255-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new lower bound for the chromatic number $\chi({\mathbb Q}^n)$ of the space ${\mathbb Q}^n$ is obtained.
Keywords: chromatic number, rational space with forbidden distances, Nelson–Hadwiger problem, independence number of a graph, Stirling's formula.
@article{MZM_2015_97_2_a7,
     author = {E. I. Ponomarenko and A. M. Raigorodskii},
     title = {New {Lower} {Bound} for the {Chromatic} {Number} of a {Rational} {Space} with {One} and {Two} {Forbidden} {Distances}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {255--261},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a7/}
}
TY  - JOUR
AU  - E. I. Ponomarenko
AU  - A. M. Raigorodskii
TI  - New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances
JO  - Matematičeskie zametki
PY  - 2015
SP  - 255
EP  - 261
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a7/
LA  - ru
ID  - MZM_2015_97_2_a7
ER  - 
%0 Journal Article
%A E. I. Ponomarenko
%A A. M. Raigorodskii
%T New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances
%J Matematičeskie zametki
%D 2015
%P 255-261
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a7/
%G ru
%F MZM_2015_97_2_a7
E. I. Ponomarenko; A. M. Raigorodskii. New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 255-261. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a7/

[1] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva”, UMN, 55:2 (2000), 147–148 | DOI | MR | Zbl

[2] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | DOI | MR | Zbl

[3] M. Benda, M. Perles, “Colorings of metric spaces”, Geombinatorics, 9:3 (2000), 113–126 | MR | Zbl

[4] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | DOI | MR | Zbl

[5] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva s dvumya zapreschennymi rasstoyaniyami”, Dokl. RAN, 408:5 (2006), 601–604 | MR

[6] A. M. Raigorodskii, I. M. Shitova, “O khromaticheskikh chislakh veschestvennykh i ratsionalnykh prostranstv s veschestvennymi ili ratsionalnymi zapreschennymi rasstoyaniyami”, Matem. sb., 199:4 (2008), 107–142 | DOI | MR | Zbl

[7] E. S. Gorskaya, I. M. Mitricheva, V. Yu. Protasov, A. M. Raigorodskii, “Otsenka khromaticheskikh chisel evklidova prostranstva metodami vypukloi minimizatsii”, Matem. sb., 200:6 (2009), 3–22 | DOI | MR

[8] F. M. de Oliveira Filho, F. Vallentin, “Fourier analysis, linear programming, and densities of distance avoiding sets in $\mathbb R^n$”, J. Eur. Math. Soc. (JEMS), 12:6 (2010), 1417–1428 | MR | Zbl

[9] A. B. Kupavskiy, “On the chromatic number of $\mathbb R^n$ with an arbitrary norm”, Discrete Math., 311:6 (2011), 437–440 | DOI | MR | Zbl

[10] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and His Mathematics, II, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002, 649–666 | MR | Zbl

[11] A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters”, Thirty Essays on Geometric Graph Theory, Springer, New York, 2013, 429–460 | MR | Zbl

[12] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007

[13] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005 | MR | Zbl

[14] A. Soifer, The Mathematical Coloring Book. Mathematics of Coloring and the Colorful Life of Its Creators, Springer, New York, 2009 | MR | Zbl