An Example in the Theory of Bisectorial Operators
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 249-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

An unbounded operator is said to be bisectorial if its spectrum is contained in two sectors lying, respectively, in the left and right half-planes and the resolvent decreases at infinity as $1/\lambda$. It is known that, for any bounded function $f$, the equation $u'-Au=f$ with bisectorial operator $A$ has a unique bounded solution $u$, which is the convolution of $f$ with the Green function. An example of a bisectorial operator generating a Green function unbounded at zero is given.
Keywords: bisectorial operator, linear differential equation, Green function, resolvent set, Fourier series.
@article{MZM_2015_97_2_a6,
     author = {A. V. Pechkurov},
     title = {An {Example} in the {Theory} of {Bisectorial} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {249--254},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a6/}
}
TY  - JOUR
AU  - A. V. Pechkurov
TI  - An Example in the Theory of Bisectorial Operators
JO  - Matematičeskie zametki
PY  - 2015
SP  - 249
EP  - 254
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a6/
LA  - ru
ID  - MZM_2015_97_2_a6
ER  - 
%0 Journal Article
%A A. V. Pechkurov
%T An Example in the Theory of Bisectorial Operators
%J Matematičeskie zametki
%D 2015
%P 249-254
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a6/
%G ru
%F MZM_2015_97_2_a6
A. V. Pechkurov. An Example in the Theory of Bisectorial Operators. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 249-254. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a6/

[1] O. Perron, “Die Stabilitätsfrage bei Differentialgleichungen”, Math. Z., 32:5 (1930), 703–728 | DOI | MR | Zbl

[2] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[3] M. A. Krasnoselskii, V. Sh. Burd, Yu. S. Kolesov, Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970 | MR | Zbl

[4] H. Bart, I. Gohberg, M. A. Kaashoek, “Wiener–Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators”, J. Funct. Anal., 68:1 (1986), 1–42 | DOI | MR | Zbl

[5] C. V. M. van der Mee, Exponentially Dichotomous Operators and Applications, Oper. Theory Adv. Appl., 182, Birkhäuser Verlag, Basel, 2008 | MR | Zbl

[6] A. V. Pechkurov, “Bisektorialnye operatornye puchki i zadacha ob ogranichennykh resheniyakh”, Spektralnye i evolyutsionnye zadachi, 21:2 (2011), 76–87

[7] A. V. Pechkurov, “Ob obratimosti v prostranstve Shvartsa operatora, porozhdennogo puchkom umerennogo rosta”, Vestn. Voronezhsk. gos. un-ta. Fizika. Matematika, 2011, no. 2, 116–122

[8] A. V. Pechkurov, “Bisektorialnye operatornye puchki i zadacha ob ogranichennykh resheniyakh”, Izv. vuzov. Matem., 2012, no. 3, 31–41 | MR | Zbl

[9] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | Zbl

[10] A. G. Baskakov, K. I. Chernyshov, “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | DOI | MR | Zbl

[11] A. G. Baskakov, K. I. Chernyshov, “O polugruppakh raspredelenii s singulyarnostyu v nule i ogranichennykh resheniyakh lineinykh differentsialnykh vklyuchenii”, Matem. zametki, 79:1 (2006), 19–33 | DOI | MR | Zbl

[12] A. G. Baskakov, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | DOI | MR | Zbl

[13] M. S. Bichegkuev, “K teorii beskonechno differentsiruemykh polugrupp operatorov”, Algebra i analiz, 22:2 (2010), 1–13 | MR | Zbl

[14] L. D. Kudryavtsev, Kratkii kurs matematicheskogo analiza, Nauka, M., 1989 | Zbl