An Example in the Theory of Bisectorial Operators
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 249-254

Voir la notice de l'article provenant de la source Math-Net.Ru

An unbounded operator is said to be bisectorial if its spectrum is contained in two sectors lying, respectively, in the left and right half-planes and the resolvent decreases at infinity as $1/\lambda$. It is known that, for any bounded function $f$, the equation $u'-Au=f$ with bisectorial operator $A$ has a unique bounded solution $u$, which is the convolution of $f$ with the Green function. An example of a bisectorial operator generating a Green function unbounded at zero is given.
Keywords: bisectorial operator, linear differential equation, Green function, resolvent set, Fourier series.
@article{MZM_2015_97_2_a6,
     author = {A. V. Pechkurov},
     title = {An {Example} in the {Theory} of {Bisectorial} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {249--254},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a6/}
}
TY  - JOUR
AU  - A. V. Pechkurov
TI  - An Example in the Theory of Bisectorial Operators
JO  - Matematičeskie zametki
PY  - 2015
SP  - 249
EP  - 254
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a6/
LA  - ru
ID  - MZM_2015_97_2_a6
ER  - 
%0 Journal Article
%A A. V. Pechkurov
%T An Example in the Theory of Bisectorial Operators
%J Matematičeskie zametki
%D 2015
%P 249-254
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a6/
%G ru
%F MZM_2015_97_2_a6
A. V. Pechkurov. An Example in the Theory of Bisectorial Operators. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 249-254. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a6/