Correspondences of the Semigroup of Endomorphisms of an Equivalence Relation
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 217-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

In terms of different constructions of the wreath product of a transformation semigroup with a small category and of the direct product of wreath products of groups, faithful representations of three correspondences of the semigroup of all endomorphisms of an arbitrary equivalence relation are described, namely, of the semigroup of all endotopisms, of the monoid of all strong endotopisms, and, correspondingly, of the group of all autotopisms of a given equivalence relation.
Keywords: wreath product, correspondence
Mots-clés : endomorphism of an equivalence relation, endotopism, autotopism.
@article{MZM_2015_97_2_a4,
     author = {Yu. V. Zhuchok and E. A. Toichkina},
     title = {Correspondences of the {Semigroup} of {Endomorphisms} of an {Equivalence} {Relation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--230},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Zhuchok
AU  - E. A. Toichkina
TI  - Correspondences of the Semigroup of Endomorphisms of an Equivalence Relation
JO  - Matematičeskie zametki
PY  - 2015
SP  - 217
EP  - 230
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a4/
LA  - ru
ID  - MZM_2015_97_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Zhuchok
%A E. A. Toichkina
%T Correspondences of the Semigroup of Endomorphisms of an Equivalence Relation
%J Matematičeskie zametki
%D 2015
%P 217-230
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a4/
%G ru
%F MZM_2015_97_2_a4
Yu. V. Zhuchok; E. A. Toichkina. Correspondences of the Semigroup of Endomorphisms of an Equivalence Relation. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 217-230. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a4/

[1] A. G. Kurosh, Obschaya algebra, Lektsii 1969–70 uchebnogo goda, Nauka, M., 1974 | MR | Zbl

[2] H. J. Zassenhaus, The Theory of Groups, Chelsea Publ., New York, 1958 | MR | Zbl

[3] O. G. Ganyushkin, T. V. Turka, “Poryadok napivgrupi vidpovidnostei skinchennoï grupi”, Visn. Kiïvsk. un-tu. Ser. fiz.-mat. nauki, 2009, no. 3, 9–13 | Zbl

[4] T. V. Turka, “Vidnoshennya Grina na napivgrupi vidpovidnostei skinchennoï grupi”, Visn. Kiïvsk. un-tu. Ser. fiz.-mat. nauki, 2010, no. 4, 38–42 | Zbl

[5] D. A. Bredikhin, “Svyazki sootvetstvii polugrupp”, Sovremennaya algebra, Postoyanno deistvuyuschii mezhvuz. (resp.) temat. sb. Vyp. 4, Izd-vo Leningr. gos. ped. in-ta, L., 1976, 31–47 | Zbl

[6] D. A. Bredikhin, “Ob opredelimosti nilpolugrupp svoimi svyazkami sootvetstvii”, Issledovaniya po sovremennoi algebre, Matem. zapiski, 11, no. 1, Izd-vo Uralskogo gos. un-ta, Sverdlovsk, 1978, 3–9 | MR | Zbl

[7] S. M. Goberstein, “Inverse semigroups determined by their bundles of correspondences”, J. Algebra, 125:2 (1989), 474–488 | DOI | MR | Zbl

[8] S. M. Goberstein, “On orthodox semigroups determined by their bundles of correspondences”, Pacific J. Math., 153:1 (1992), 71–84 | DOI | MR | Zbl

[9] M. S. Burgin, “Kategorii s involyutsiei i sootvetstviya v $\gamma$-kategoriyakh”, Tr. MMO, 22, Izd-vo Mosk. un-ta, M., 1970, 161–228 | MR | Zbl

[10] M. Sh. Tsalenko, “Klassifikatsiya kategorii sootvetstvii i tipy regulyarnosti kategorii”, Tr. MMO, 41, Izd-vo Mosk. un-ta, M., 1980, 241–285 | MR | Zbl

[11] I. M. Gelfand, V. A. Ponomarev, “Nerazlozhimye predstavleniya gruppy Lorentsa”, UMN, 23:2 (1968), 3–60 | MR | Zbl

[12] S. Mac Lane, “An algebra of additive relations”, Proc. Nat. Acad. Sci. USA, 47 (1961), 1043–1051 | DOI | MR | Zbl

[13] D. Puppe, “Korrespondenzen in Abelschen Kategorien”, Math. Ann., 148 (1962), 1–30 | DOI | MR | Zbl

[14] A. A. Iskander, “Struktura sootvetstvii universalnoi algebry”, Izv. AN SSSR. Ser. matem., 29:6 (1965), 1357–1372 | MR | Zbl

[15] A. A. Iskander, “Chastichnye universalnye algebry s zadannymi strukturami podalgebr i sootvetstvii”, Matem. sb., 70:3 (1966), 438–456 | MR | Zbl

[16] G. I. Zhitomirskii, “Stabilnye binarnye otnosheniya na universalnykh algebrakh”, Matem. sb., 82:2 (1970), 163–174 | MR | Zbl

[17] M. Petrich, “The semigroup of endomorphisms of a linear manifold”, Duke Math. J., 36 (1969), 145–152 | DOI | MR | Zbl

[18] A. Laradji, A. Umar, “Combinatorial results for semigroups of order-preserving full transformations”, Semigroup Forum, 72:1 (2006), 51–62 | DOI | MR | Zbl

[19] B. Steinberg, “On the endomorphism monoid of a profinite semigroup”, Port. Math., 68:2 (2011), 177–183 | DOI | MR | Zbl

[20] E. A. Bondar, Yu. V. Zhuchok, “Polugruppy silnykh endomorfizmov beskonechnykh grafov i gipergrafov”, Ukr. matem. zhurn., 65:6 (2013), 743–754 | MR | Zbl

[21] B. V. Popov, “Polugruppy endotopizmov $\mu$-arnykh otnoshenii”, Uchen. zap. LNPU im. A. Gertsena, 274 (1965), 184–201 | MR | Zbl

[22] Yu. V. Zhuchok, E. A. Toichkina, “Polugruppy endotopizmov otnosheniya ekvivalentnosti”, Matem. sb., 205:5 (2014), 37–54 | DOI | Zbl

[23] A. A. Albert, “Quasigroups. I”, Trans. Amer. Math. Soc., 54 (1943), 507–519 | DOI | MR | Zbl

[24] V. D. Belousov, “Uravnoveshennye tozhdestva v kvazigruppakh”, Matem. sb., 70:1 (1966), 55–97 | MR | Zbl

[25] A. Kh. Tabarov, “Avtotopii i antiavtotopii lineinykh kvazigrupp”, Dokl. AN Respubliki Tatarstan, 52 (2009), 10–16

[26] A. Kh. Tabarov, “On endotopisms of linear and alinear quasigroups”, The XIV Conference On Applied and Industrial Mathematics (Chisinau, August 17–19, 2006), 2006, 319–320

[27] Yu. V. Zhuchok, “Endomorfizmi vidnoshen ekvivalentnosti”, Visn. Kiïvsk. un-tu. Ser. fiz.-mat. nauki, 2007, no. 3, 22–26 | Zbl

[28] V. Fleisher, “O spletenii monoidov s kategoriyami”, Tr. AN Estonskoi SSR, 35:3 (1986), 237–243 | MR

[29] V. Fleischer, U. Knauer, “Endomorphism monoids of acts are wreath products of monoids with small categories”, Semigroups, Theory and Applications, Lecture Notes in Math., 1320, Springer-Verlag, Berlin, 1988, 84–96 | DOI | MR | Zbl

[30] U. Knauer, M. Nieporte, “Endomorphisms of graphs. I. The monoid of strong endomorphisms”, Arch. Math. (Basel), 52:6 (1989), 607–614 | DOI | MR | Zbl

[31] Yu. V. Zhuchok, “Polugruppy endomorfizmov nekotorykh svobodnykh proizvedenii”, Fundament. i prikl. matem., 17:3 (2012), 51–60 | MR | Zbl

[32] L. M. Gluskin, “Polugruppy izotonnykh preobrazovanii”, UMN, 16:5 (1961), 157–162 | MR | Zbl

[33] K. Čulík, “Zur Theorie der Graphen”, Časopis Pěst. Mat., 83 (1958), 133–155 | MR | Zbl

[34] M. Böttcher, U. Knauer, “Endomorphism spectra of graphs”, Discrete Math., 109:1-3 (1992), 45–57 | DOI | MR | Zbl

[35] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl