An Analog of Orlov's Theorem on the Deficiency Index of Second-Order Differential Operators
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 314-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: quasi-derivative, quasi-differential expression with matrix-valued coefficients, minimal and maximal operators, deficiency number, deficiency index.
@article{MZM_2015_97_2_a14,
     author = {I. N. Braeutigam and K. A. Mirzoev and T. A. Safonova},
     title = {An {Analog} of {Orlov's} {Theorem} on the {Deficiency} {Index} of {Second-Order} {Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {314--317},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a14/}
}
TY  - JOUR
AU  - I. N. Braeutigam
AU  - K. A. Mirzoev
AU  - T. A. Safonova
TI  - An Analog of Orlov's Theorem on the Deficiency Index of Second-Order Differential Operators
JO  - Matematičeskie zametki
PY  - 2015
SP  - 314
EP  - 317
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a14/
LA  - ru
ID  - MZM_2015_97_2_a14
ER  - 
%0 Journal Article
%A I. N. Braeutigam
%A K. A. Mirzoev
%A T. A. Safonova
%T An Analog of Orlov's Theorem on the Deficiency Index of Second-Order Differential Operators
%J Matematičeskie zametki
%D 2015
%P 314-317
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a14/
%G ru
%F MZM_2015_97_2_a14
I. N. Braeutigam; K. A. Mirzoev; T. A. Safonova. An Analog of Orlov's Theorem on the Deficiency Index of Second-Order Differential Operators. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 314-317. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a14/

[1] S. A. Orlov, Dokl. AN SSSR, 92:3 (1953), 483–486 | MR | Zbl

[2] F. A. Neimark, “Ob indekse defekta differentsialnogo operatora”, UMN, 17:4 (1962), 157–163 | MR | Zbl

[3] K. A. Mirzoev, Dokl. RAN, 380:5 (2001), 591–595 | MR | Zbl

[4] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[5] V. P. Serebryakov, Izv. vuzov. Matem., 2000, no. 3, 48–53 | MR | Zbl

[6] R. L. Anderson, Canad. J. Math, 28:5 (1976), 905–914 | DOI | MR | Zbl

[7] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958 | MR | Zbl