Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_2_a13, author = {A. V. Atanov and A. V. Loboda}, title = {Affine-Homogeneous {Surfaces} of {Type} $(0,0)$ in the {Space~}$\mathbb C^3$}, journal = {Matemati\v{c}eskie zametki}, pages = {309--313}, publisher = {mathdoc}, volume = {97}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a13/} }
A. V. Atanov; A. V. Loboda. Affine-Homogeneous Surfaces of Type $(0,0)$ in the Space~$\mathbb C^3$. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 309-313. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a13/
[1] A. V. Loboda, A. S. Khodarev, Izv. vuzov. Matem., 2003, no. 10, 38–50 | MR | Zbl
[2] E. Cartan, Ann. Mat. Pura Appl. (4), 11:1 (1933), 17–90 | DOI | MR | Zbl
[3] G. Fels, W. Kaup, Acta Math., 201:1 (2008), 1–82 | DOI | MR | Zbl
[4] V. K. Beloshapka, I. G. Kossovskiy, J. Math. Anal. Appl., 374:2 (2011), 655–672 | DOI | MR | Zbl
[5] T. T. Z. Nguen, Matem. zametki, 94:2 (2013), 246–265 | DOI | MR | Zbl
[6] A. V. Loboda, T. T. Z. Nguen, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei, Tr. MIAN, 279, MAIK, M., 2012, 102–119 | MR | Zbl
[7] A. V. Atanov, A. V. Loboda, A. V. Shipovskaya, Affine homogeneous strictly pseudoconvex hypersurfaces of the type $(1/2,0)$ in $C^3$, 2014, arXiv: href{http://arxiv.org/abs/1401.2252}{1401.2252}
[8] A. V. Loboda, Materialy Voronezhskoi zimnei matematicheskoi shkoly, Voronezh, 2013, 144–145
[9] A. V. Loboda, Odnorodnost vlozhennykh mnogoobrazii. Afinnaya geometriya veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^2$, Izd-vo Voronezhsk. gos. arkh.-stroit. un-ta, Voronezh, 2012