Affine-Homogeneous Surfaces of Type $(0,0)$ in the Space~$\mathbb C^3$
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 309-313.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: homogeneous manifold, strictly pseudoconvex surface, canonical equation.
Mots-clés : affine transformation
@article{MZM_2015_97_2_a13,
     author = {A. V. Atanov and A. V. Loboda},
     title = {Affine-Homogeneous {Surfaces} of {Type} $(0,0)$ in the {Space~}$\mathbb C^3$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {309--313},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a13/}
}
TY  - JOUR
AU  - A. V. Atanov
AU  - A. V. Loboda
TI  - Affine-Homogeneous Surfaces of Type $(0,0)$ in the Space~$\mathbb C^3$
JO  - Matematičeskie zametki
PY  - 2015
SP  - 309
EP  - 313
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a13/
LA  - ru
ID  - MZM_2015_97_2_a13
ER  - 
%0 Journal Article
%A A. V. Atanov
%A A. V. Loboda
%T Affine-Homogeneous Surfaces of Type $(0,0)$ in the Space~$\mathbb C^3$
%J Matematičeskie zametki
%D 2015
%P 309-313
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a13/
%G ru
%F MZM_2015_97_2_a13
A. V. Atanov; A. V. Loboda. Affine-Homogeneous Surfaces of Type $(0,0)$ in the Space~$\mathbb C^3$. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 309-313. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a13/

[1] A. V. Loboda, A. S. Khodarev, Izv. vuzov. Matem., 2003, no. 10, 38–50 | MR | Zbl

[2] E. Cartan, Ann. Mat. Pura Appl. (4), 11:1 (1933), 17–90 | DOI | MR | Zbl

[3] G. Fels, W. Kaup, Acta Math., 201:1 (2008), 1–82 | DOI | MR | Zbl

[4] V. K. Beloshapka, I. G. Kossovskiy, J. Math. Anal. Appl., 374:2 (2011), 655–672 | DOI | MR | Zbl

[5] T. T. Z. Nguen, Matem. zametki, 94:2 (2013), 246–265 | DOI | MR | Zbl

[6] A. V. Loboda, T. T. Z. Nguen, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei, Tr. MIAN, 279, MAIK, M., 2012, 102–119 | MR | Zbl

[7] A. V. Atanov, A. V. Loboda, A. V. Shipovskaya, Affine homogeneous strictly pseudoconvex hypersurfaces of the type $(1/2,0)$ in $C^3$, 2014, arXiv: href{http://arxiv.org/abs/1401.2252}{1401.2252}

[8] A. V. Loboda, Materialy Voronezhskoi zimnei matematicheskoi shkoly, Voronezh, 2013, 144–145

[9] A. V. Loboda, Odnorodnost vlozhennykh mnogoobrazii. Afinnaya geometriya veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^2$, Izd-vo Voronezhsk. gos. arkh.-stroit. un-ta, Voronezh, 2012