On Points of the Modular Hyperbola under the Graph of a Linear Function
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 296-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the number of solutions of the congruence $xy\equiv 1\,(\operatorname{mod} p)$ under the graph of a linear function, an asymptotic formula with square root cancellation in the error term is proved.
Keywords: modular hyperbola
Mots-clés : Fourier coefficient.
@article{MZM_2015_97_2_a11,
     author = {A. V. Ustinov},
     title = {On {Points} of the {Modular} {Hyperbola} under the {Graph} of a {Linear} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {296--301},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a11/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - On Points of the Modular Hyperbola under the Graph of a Linear Function
JO  - Matematičeskie zametki
PY  - 2015
SP  - 296
EP  - 301
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a11/
LA  - ru
ID  - MZM_2015_97_2_a11
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T On Points of the Modular Hyperbola under the Graph of a Linear Function
%J Matematičeskie zametki
%D 2015
%P 296-301
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a11/
%G ru
%F MZM_2015_97_2_a11
A. V. Ustinov. On Points of the Modular Hyperbola under the Graph of a Linear Function. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 296-301. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a11/

[1] I. E. Shparlinski, “Modular hyperbolas”, Japan. J. Math., 7:2 (2012), 235–294 | DOI | MR | Zbl

[2] A. V. Ustinov, “O chisle reshenii sravneniya $xy\equiv l\,(\operatorname{mod}q)$ pod grafikom dvazhdy nepreryvno differentsiruemoi funktsii”, Algebra i analiz, 20:5 (2008), 186–216 | MR | Zbl

[3] A. Weil, “On some exponential sums”, Proc. Natl. Acad. Sci. USA, 34 (1948), 204–207 | DOI | MR | Zbl

[4] V. A. Bykovskii, “Asimptoticheskie svoistva tselykh tochek $(a_1,a_2)$, udovletvoryayuschikh sravneniyu $a_1a_2\equiv l(q)$”, Analiticheskaya teoriya chisel i teoriya funktsii. 4, Zap. nauchn. sem. LOMI, 112, Izd-vo «Nauka», Leningrad. otd., L., 1981, 5–25 | MR | Zbl

[5] O. A. Gorkusha, “O konechnykh tsepnykh drobyakh spetsialnogo vida”, Chebyshevskii sb., 9:1 (2008), 80–107 | MR | Zbl

[6] A. V. Ustinov, “O raspredelenii chisel Frobeniusa s tremya argumentami”, Izv. RAN. Ser. matem., 74:5 (2010), 145–170 | DOI | MR | Zbl

[7] I. E. Shparlinski, A. Winterhof, “On the number of distances between the coordinates of points on modular hyperbolas”, J. Number Theory, 128:5 (2008), 1224–1230 | DOI | MR | Zbl

[8] A. V. Ustinov, “Spinovye tsepochki i zadacha Arnolda o statistikakh Gaussa–Kuzmina dlya kvadratichnykh irratsionalnostei”, Matem. sb., 204:5 (2013), 143–160 | DOI | MR | Zbl

[9] C. Cobeli, Y. Gallot, P. Moree, A. Zaharescu, “Sister Beiter and Kloosterman: a tale of cyclotomic coefficients and modular inverses”, Indag. Math. (N.S.), 24:4 (2013), 915–929 | MR | Zbl