Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 174-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic representations of power bounded operators and bounded semigroups of linear operators acting in Banach spaces are obtained under the assumptions that the spectrum of bounded operators on the unit circle and the spectrum of the semigroup generator on the imaginary axis are countable. The methods of abstract harmonic analysis and the spectral theory of operators were used.
Keywords: power bounded operator, operator semigroup, harmonic analysis, spectral theory, asymptotic representation, Banach algebra.
@article{MZM_2015_97_2_a1,
     author = {A. G. Baskakov},
     title = {Harmonic and {Spectral} {Analysis} of {Power} {Bounded} {Operators} and {Bounded} {Semigroups} of {Operators} on {Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {174--190},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a1/}
}
TY  - JOUR
AU  - A. G. Baskakov
TI  - Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces
JO  - Matematičeskie zametki
PY  - 2015
SP  - 174
EP  - 190
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a1/
LA  - ru
ID  - MZM_2015_97_2_a1
ER  - 
%0 Journal Article
%A A. G. Baskakov
%T Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces
%J Matematičeskie zametki
%D 2015
%P 174-190
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a1/
%G ru
%F MZM_2015_97_2_a1
A. G. Baskakov. Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 174-190. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a1/

[1] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz. T. 2. Struktura i analiz kompaktnykh grupp. Analiz na lokalno kompaktnykh abelevykh gruppakh, Mir, M., 1975 | MR | Zbl

[2] A. G. Baskakov, Garmonicheskii analiz lineinykh operatorov, Izd-vo Voronezhsk. gos. un-ta, Voronezh, 1987 | MR

[3] A. G. Baskakov, “O spektralnom sinteze v banakhovykh modulyakh nad kommutativnymi banakhovymi algebrami”, Matem. zametki, 34:4 (1983), 573–585 | MR | Zbl

[4] A. G. Baskakov, “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Funktsionalnyi analiz, SMFN, 9, MAI, M., 2004, 3–151 | MR | Zbl

[5] A. G. Baskakov, “Nekotorye kriterii pochti periodichnosti ogranichennykh funktsii”, Tr. NII matem. VGU, 11, Izd-vo Voronezhsk. gos. un-ta, Voronezh, 1973, 10–16 | MR

[6] A. G. Baskakov, “Spektralnye kriterii pochti periodichnosti reshenii funktsionalnykh uravnenii”, Matem. zametki, 24:2 (1978), 195–206 | MR | Zbl

[7] A. G. Baskakov, “Neravenstva bernshteinovskogo tipa v abstraktnom garmonicheskom analize”, Sib. matem. zhurn., 20:5 (1979), 942–952 | MR | Zbl

[8] A. G. Baskakov, “Garmonicheskii analiz kosinusnoi i eksponentsialnoi operatornykh funktsii”, Matem. sb., 124:1 (1984), 68–95 | MR | Zbl

[9] A. G. Baskakov, “Ob obschikh ergodicheskikh teoremakh v banakhovykh modulyakh”, Funkts. analiz i ego pril., 14:3 (1980), 63–64 | MR | Zbl

[10] A. G. Baskakov, “O spektralnom analize predstavlenii kommutativnykh banakhovykh algebr”, Tr. NII matem. VGU, Izd-vo Voronezhsk. gos. un-ta, Voronezh, 1974, 1–6 | MR

[11] A. G. Baskakov, N. S. Kaluzhina, “Teorema Berlinga dlya funktsii s suschestvennym spektrom iz odnorodnykh prostranstv i stabilizatsiya reshenii parabolicheskikh uravnenii”, Matem. zametki, 92:5 (2012), 643–661 | DOI | MR | Zbl

[12] A. G. Baskakov, “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1 (2013), 77–128 | DOI | MR | Zbl

[13] A. G. Baskakov, K. A. Sintyaeva, “O neravenstvakh Bora–Favara dlya operatorov”, Izv. vuzov. Matem., 2009, no. 12, 14–21 | MR | Zbl

[14] A. G. Baskakov, N. S. Kaluzhina, D. M. Polyakov, “Medlenno menyayuschiesya na beskonechnosti polugruppy operatorov”, Izv. vuzov. Matem., 2014, no. 7, 3–14

[15] Y. Katznelson, L. Tzafriri, “On power bounded operators”, J. Funct. Anal., 68:3 (1986), 313–328 | DOI | MR | Zbl

[16] T. Eisner, Stability of Operators and Operator Semigroups, Oper. Theory Adv. Appl., 209, Basel, Birkhäser Verlag, 2010 | MR | Zbl

[17] Yu. I. Lyubich, Vũ Quôc Phóng, “Asymptotic stability of linear differential equations in Banach spaces”, Studia Math., 88:1 (1988), 37–42 | MR | Zbl

[18] W. Arendt, C. J. K. Batty, “Tauberian theorems and stability of one-parameter semigroups”, Trans. Amer. Math. Soc., 306:2 (1988), 837–852 | DOI | MR | Zbl

[19] G. M. Sklyar, V. Ya. Shirman, “Asimptoticheskaya ustoichivost lineinykh differentsialnykh uravnenii v banakhovom prostranstve”, Teoriya funktsii, funktsionalnyi analiz i prilozheniya, 37 (1982), 127–132 | MR | Zbl

[20] E. Yu. Emel'yanov, Non-Spectral Asymptotic Analysis of One-parameter Operator Semigroups, Oper. Theory Adv. Appl., 173, Basel, Birkhäuser Verlag, 2007 | MR | Zbl

[21] E. Yu. Emelyanov, “Usloviya asimptoticheskoi konechnomernosti $C_0$-polugruppy”, Sib. matem. zhurn., 44:5 (2003), 1015–1020 | MR | Zbl

[22] A. G. Baskakov, K. I. Chernyshov, “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | DOI | MR | Zbl

[23] A. G. Baskakov, “Lineinye otnosheniya kak generatory polugrupp operatorov”, Matem. zametki, 84:2 (2008), 175–192 | DOI | MR | Zbl

[24] A. G. Baskakov, “Operatornye ergodicheskie teoremy i dopolnyaemost podprostranstv banakhovykh prostranstv”, Izv. vuzov. Matem., 1988, no. 11, 3–11 | MR | Zbl

[25] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000 | MR | Zbl