Ergodic Properties of a Transformation of a Self-Similar Space with a Hausdorff Measure
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 163-173
Cet article a éte moissonné depuis la source Math-Net.Ru
On a space equipped with a Hausdorff measure and possessing the self-similarity property, we prove ergodicity and study the continuity of the transformation generated by the shift transformation on a sequence space.
Keywords:
Hausdorff measure, self-similarity, ergodicity
Mots-clés : fractal, chaos.
Mots-clés : fractal, chaos.
@article{MZM_2015_97_2_a0,
author = {N. S. Arkashov},
title = {Ergodic {Properties} of {a~Transformation} of {a~Self-Similar} {Space} with {a~Hausdorff} {Measure}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--173},
year = {2015},
volume = {97},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a0/}
}
N. S. Arkashov. Ergodic Properties of a Transformation of a Self-Similar Space with a Hausdorff Measure. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 163-173. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a0/
[1] R. M. Kronover, Fraktaly i khaos v dinamicheskikh sistemakh, Postmarket, M., 2000
[2] Z. Nitetski, Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR | Zbl
[3] G. Edgar, Measure, Topology, and Fractal Geometry, Undergrad. Texts Math., Springer, New York, 2008 | MR | Zbl
[4] P. Khalmosh, Teoriya mery, IL, M., 1953 | MR | Zbl
[5] A. N. Shiryaev, Veroyatnost, Nauka, M., 1980 | MR | Zbl
[6] G. M. Zaslavskii, Gamiltonov khaos i fraktalnaya dinamika, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2010
[7] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl
[8] P. Khalmosh, Lektsii po ergodicheskoi teorii, Izd-vo Udmurtsk. un-ta, Izhevsk, 1999