On New Ideal (Noninteracting) Gases in Supercritical Thermodynamics
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 85-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Isotherms obtained on the basis of a new distribution are compared with isotherms of the famous van der Waals model, using a language easily understood by engineers and undergraduates (without proofs or theorems, which can be found in the given references, but with elementary examples and simple associations). We propose a new interpretation of the van der Waals model. On the Hougen–Watson diagram, the domain where the mixing of gases occurs with maximum rate is indicated. A new distribution is presented, the notion of new ideal gas is introduced, and the invariants of the isotherms introduced by the author are explained.
Keywords: isotherm, isochore, number of collective degrees of freedom, admissible cluster size, Boltzmann–Maxwell ideal gas, Lagrangian manifold, tunnel classical operator, focal point, jamming effect, critical point
Mots-clés : opalescence.
@article{MZM_2015_97_1_a9,
     author = {V. P. Maslov},
     title = {On {New} {Ideal} {(Noninteracting)} {Gases} in {Supercritical} {Thermodynamics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {85--102},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a9/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - On New Ideal (Noninteracting) Gases in Supercritical Thermodynamics
JO  - Matematičeskie zametki
PY  - 2015
SP  - 85
EP  - 102
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a9/
LA  - ru
ID  - MZM_2015_97_1_a9
ER  - 
%0 Journal Article
%A V. P. Maslov
%T On New Ideal (Noninteracting) Gases in Supercritical Thermodynamics
%J Matematičeskie zametki
%D 2015
%P 85-102
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a9/
%G ru
%F MZM_2015_97_1_a9
V. P. Maslov. On New Ideal (Noninteracting) Gases in Supercritical Thermodynamics. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 85-102. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a9/

[1] N. M. Kuznetsov, V. V. Kozynda, V. Ya. Basevich, S. M. Frolov, “Uravneniya sostoyaniya metana, kisloroda i ikh smesei: raschet temperatury i davleniya smesei v kamere sgoraniya zhidkostnogo raketnogo dvigatelya pered vosplameneniem”, Gorenie i vzryv, 6, TORUS PRESS, M., 2013, 19–25

[2] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 5. Statisticheskaya fizika, Nauka, M., 1976 | MR

[3] P. Erdős, J. Lehner, “The distribution of the number of summands in the partitions of a positive integer”, Duke Math. J., 8:2 (1941), 335–345 | DOI | MR | Zbl

[4] V. P. Maslov, “Old mathematical errors in statistical physics”, Russ. J. Math. Phys., 20:2 (2013), 214–229 | DOI | MR | Zbl

[5] V. P. Maslov, “Dvukhflyuidnaya kartina nadkriticheskikh yavlenii”, TMF, 180:3 (2014), 394–432 | DOI

[6] V. P. Maslov, “Matematicheskie aspekty slabo neidealnogo boze- i fermi-gaza na kristallicheskoi podlozhke”, Funkts. analiz i ego pril., 37:2 (2003), 16–27 | DOI | MR | Zbl

[7] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[8] D. A. Gyorog, E. F. Obert,, “Virial coefficients for argon, methane, nitrogen, and xenon”, AIChE J., 10:5 (1964), 621–625 | DOI

[9] V. P. Maslov, “Supercritical and critical states of fluids: new distribution and main invariants”, Math. Notes, 96:5 (2014), 732–738

[10] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR | Zbl

[11] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Publ., New York, 1965 | MR | Zbl

[12] V. P. Maslov, “Violation of Carathéodory axioms at the critical point of a gas. Frenkel point as a critical point of the transition “liquid-amorphous solid” in the region of negative pressure”, Math. Notes, 96:6 (2014), 977–982

[13] V. I. Arnold, Teoriya katastrof, Nauka, M., 1990 | MR | Zbl

[14] D. Yu. Ivanov, Critical Behavior of Non-ideal Systems, Wiley-VCH, Weinheim, 2008 | Zbl

[15] V. P. Maslov, “Calculation of the number of collective degrees of freedom and of the admissible cluster size for isotherms in the Van-der-Waals model in supercritical states”, Russ. J. Math. Phys., 21:4 (2014), 494–503 | DOI | MR

[16] V. P. Maslov, “Undistinguishing statistics of objectively distinguishable objects: Thermodynamics and superfluidity of classical gas”, Math. Notes, 94:5 (2013), 722–813 | DOI | MR | Zbl

[17] B. B. Kadomtsev, Kollektivnye yavleniya v plazme, Nauka, M., 1988 | MR

[18] V. P. Maslov, “On homogeneous mixtures of gases”, Math. Notes, 89:5 (2011), 706–711 | DOI | Zbl