Orthogonality of the Modules of Dual Groups
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 80-84
Cet article a éte moissonné depuis la source Math-Net.Ru
Warfield duality for locally free groups and Arnold duality for quotient divisible groups are studied. It is shown that the modules of Warfield dual groups are orthogonal and the modules of Arnold dual groups are orthogonal.
Keywords:
Warfield duality, Arnold duality, $p^s$-module of a locally free group, $p$-adic module of a group.
Mots-clés : orthogonal modules, Maltsev matrix
Mots-clés : orthogonal modules, Maltsev matrix
@article{MZM_2015_97_1_a8,
author = {Yu. V. Kostromina},
title = {Orthogonality of the {Modules} of {Dual} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {80--84},
year = {2015},
volume = {97},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a8/}
}
Yu. V. Kostromina. Orthogonality of the Modules of Dual Groups. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 80-84. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a8/
[1] Yu. V. Kostromina, “Dvoistvennost Uorfilda i matritsy Maltseva”, Fundament. i prikl. matem., 17:8 (2012), 77–94 | MR
[2] R. B. Warfield, “Homomorphisms and duality for torsion-free groups”, Math. Z., 107 (1968), 189—200 | DOI | MR | Zbl
[3] R. Beaumont, R. Pierce, “Torsion free rings”, Illinois J. Math., 5 (1961), 61—98 | MR | Zbl
[4] V. P. Elizarov, “Sistemy lineinykh uravnenii nad konechnymi koltsami”, Tr. po diskr. matem., 6, Fizmatlit, M., 2002, 31–47
[5] Yu. V. Kostromina, “Dvoistvennost Arnolda i matritsy Maltseva”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2012, no. 2, 23–28