Explicit Embeddings of Finite abelian $p$-Groups in the Group~$\mathcal J(\mathbb F_p)$
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 74-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every finite abelian $p$-group, an explicit embedding of this group in the Jennings group $\mathcal J(\mathbb F_p)$ is constructed.
Keywords: finite abelian group, Jennings group, commutative ring, formal power series.
@article{MZM_2015_97_1_a7,
     author = {D. D. Kiselev},
     title = {Explicit {Embeddings} of {Finite} abelian $p${-Groups} in the {Group~}$\mathcal J(\mathbb F_p)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {74--79},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a7/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - Explicit Embeddings of Finite abelian $p$-Groups in the Group~$\mathcal J(\mathbb F_p)$
JO  - Matematičeskie zametki
PY  - 2015
SP  - 74
EP  - 79
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a7/
LA  - ru
ID  - MZM_2015_97_1_a7
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T Explicit Embeddings of Finite abelian $p$-Groups in the Group~$\mathcal J(\mathbb F_p)$
%J Matematičeskie zametki
%D 2015
%P 74-79
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a7/
%G ru
%F MZM_2015_97_1_a7
D. D. Kiselev. Explicit Embeddings of Finite abelian $p$-Groups in the Group~$\mathcal J(\mathbb F_p)$. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 74-79. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a7/

[1] S. A. Jennings, “Substitution groups of formal power series”, Canad. J. Math., 6 (1954), 325–340 | DOI | MR | Zbl

[2] R. Camina, “Subgroups of the Nottingham group”, J. Algebra, 196:1 (1997), 101–113 | DOI | MR | Zbl

[3] I. K. Babenko, “Algebra, geometriya i topologiya gruppy podstanovok formalnykh stepennykh ryadov”, UMN, 68:1 (2013), 3–76 | DOI | MR | Zbl

[4] J. Lubin, J. Tate, “Formal complex multiplication in local fields”, Ann. of Math. (2), 81:2 (1965), 380–387 | DOI | MR | Zbl