Essential Signatures and Canonical Bases of Irreducible Representations of the Group $G_{2}$
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 35-47
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider representations of simple Lie algebras and the problem of constructing a “canonical” weight basis in an arbitrary irreducible finite-dimensional highest-weight module. Vinberg suggested a method for constructing such bases by applying the lowering operators corresponding to all negative roots to the highest-weight vector and put forward a number of conjectures on the parametrization and structure of such bases. It follows from papers by Feigin, Fourier, and Littelmann that these conjectures are true for the cases of $A_n$ and $C_{n}$. In the present paper, we prove these conjectures for the case of $G_2$ by using a different approach suggested by Vinberg.
Keywords:
simple Lie algebra, irreducible representation, canonical base, essential signature, weight basis.
Mots-clés : group $G_{2}$
Mots-clés : group $G_{2}$
@article{MZM_2015_97_1_a3,
author = {A. A. Gornitskii},
title = {Essential {Signatures} and {Canonical} {Bases} of {Irreducible} {Representations} of the {Group} $G_{2}$},
journal = {Matemati\v{c}eskie zametki},
pages = {35--47},
publisher = {mathdoc},
volume = {97},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a3/}
}
TY - JOUR
AU - A. A. Gornitskii
TI - Essential Signatures and Canonical Bases of Irreducible Representations of the Group $G_{2}$
JO - Matematičeskie zametki
PY - 2015
SP - 35
EP - 47
VL - 97
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a3/
LA - ru
ID - MZM_2015_97_1_a3
ER -
A. A. Gornitskii. Essential Signatures and Canonical Bases of Irreducible Representations of the Group $G_{2}$. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a3/