Essential Signatures and Canonical Bases of Irreducible Representations of the Group $G_{2}$
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 35-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider representations of simple Lie algebras and the problem of constructing a “canonical” weight basis in an arbitrary irreducible finite-dimensional highest-weight module. Vinberg suggested a method for constructing such bases by applying the lowering operators corresponding to all negative roots to the highest-weight vector and put forward a number of conjectures on the parametrization and structure of such bases. It follows from papers by Feigin, Fourier, and Littelmann that these conjectures are true for the cases of $A_n$ and $C_{n}$. In the present paper, we prove these conjectures for the case of $G_2$ by using a different approach suggested by Vinberg.
Keywords: simple Lie algebra, irreducible representation, canonical base, essential signature, weight basis.
Mots-clés : group $G_{2}$
@article{MZM_2015_97_1_a3,
     author = {A. A. Gornitskii},
     title = {Essential {Signatures} and {Canonical} {Bases} of {Irreducible} {Representations} of the {Group} $G_{2}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a3/}
}
TY  - JOUR
AU  - A. A. Gornitskii
TI  - Essential Signatures and Canonical Bases of Irreducible Representations of the Group $G_{2}$
JO  - Matematičeskie zametki
PY  - 2015
SP  - 35
EP  - 47
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a3/
LA  - ru
ID  - MZM_2015_97_1_a3
ER  - 
%0 Journal Article
%A A. A. Gornitskii
%T Essential Signatures and Canonical Bases of Irreducible Representations of the Group $G_{2}$
%J Matematičeskie zametki
%D 2015
%P 35-47
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a3/
%G ru
%F MZM_2015_97_1_a3
A. A. Gornitskii. Essential Signatures and Canonical Bases of Irreducible Representations of the Group $G_{2}$. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a3/

[1] P. Littelmann, “Cones, crystals, and patterns”, Transform. Groups, 3:2 (1998), 145–179 | DOI | MR | Zbl

[2] E. Vinberg, On Some Canonical Bases of Representation Spaces of Simple Lie Algebra, Sonference talk, Bielefeld, 2005

[3] E. Feigin, G. Fourier, P. Littelmann, “PBW filtration and bases for symplectic Lie algebras”, Int. Math. Res. Not. IMRN, 24 (2011), 5760–5784 | MR | Zbl

[4] E. Feigin, G. Fourier, P. Littelmann, “PBW filtration and bases for irreducible modules in type $A_n$”, Transform. Groups, 165:1 (2011), 71–89 | DOI | MR | Zbl

[5] V. L. Popov, “Styagivanie deistvii reduktivnykh algebraicheskikh grupp”, Matem. sb., 130:3 (1986), 310–334 | MR | Zbl

[6] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR | Zbl

[7] E. B. Vinberg, A. L. Onischik, Seminar po gruppam Li i algebraicheskim gruppam, URSS, M., 1988 | MR | Zbl