Mean Values of Some Multiplicative Functions
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 115-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotic formulas for the mean values of a number of arithmetic functions $f=f(n)$ on a “short” interval of the form $x$, where the length $h$ differs from $x$ by a power-law decrease: $h=x^{1-\delta}$, $0\delta1$.
Keywords: arithmetic function, mean value of a multiplicative function, Riemann zeta function, Dirichlet series.
@article{MZM_2015_97_1_a11,
     author = {A. A. Sedunova},
     title = {Mean {Values} of {Some} {Multiplicative} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {115--128},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a11/}
}
TY  - JOUR
AU  - A. A. Sedunova
TI  - Mean Values of Some Multiplicative Functions
JO  - Matematičeskie zametki
PY  - 2015
SP  - 115
EP  - 128
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a11/
LA  - ru
ID  - MZM_2015_97_1_a11
ER  - 
%0 Journal Article
%A A. A. Sedunova
%T Mean Values of Some Multiplicative Functions
%J Matematičeskie zametki
%D 2015
%P 115-128
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a11/
%G ru
%F MZM_2015_97_1_a11
A. A. Sedunova. Mean Values of Some Multiplicative Functions. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 115-128. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a11/

[1] S. Ramanujan, “Some formulae in the analythic theory of numbers”, Mess. Math., 45 (1916), 81–84

[2] B. M. Wilson, “Proofs of some formulae enunciated by Ramanujan”, Proc. London Math. Soc. (2), 21 (1922), 235–255 | MR | Zbl

[3] A. E. Mukanova, “Asimptoticheskaya formula dlya srednego znacheniya funktsii V. I. Arnolda”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2008, no. 2, 51–53 | MR

[4] P. T. Bateman, P. Erdős, C. Pomerance, E. G. Straus, “The arithmetic mean of the divisors of an integer”, Analytic Number Theory, Lecture Notes in Math., 899, Springer, New York, 1981, 197–220 | DOI | MR | Zbl

[5] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR | Zbl

[6] M. N. Huxley, “Exponential sums and the Riemann Zeta Function V”, Proc. London Math. Soc. (3), 90 (2005), 1–41 | DOI | MR | Zbl

[7] E. Titchmarsh, Teoriya funktsii, Nauka, M., 1980 | MR | Zbl

[8] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL., M., 1953 | MR | Zbl

[9] M. N. Huxley, “On the difference between consecutive primes”, Invent. Math., 15:2 (1972), 164–170 | DOI | MR | Zbl

[10] K. Ramachandra, “On the number of Goldbach numbers in small intervals”, J. Indian Math. Soc. (N.S.), 37 (1973), 157–170 | MR