On the Asymptotic Estimates of Solutions of Emden--Fowler Type Equations
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 103-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Emden–Fowler type equations of arbitrary order are considered. The paper contains asymptotic estimates of nonoscillating continuable and noncontinuable solutions of such equations.
Keywords: Emden–Fowler type equation, nonoscillating solution, Newton polyhedron.
@article{MZM_2015_97_1_a10,
     author = {V. S. Samovol},
     title = {On the {Asymptotic} {Estimates} of {Solutions} of {Emden--Fowler} {Type} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {103--114},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a10/}
}
TY  - JOUR
AU  - V. S. Samovol
TI  - On the Asymptotic Estimates of Solutions of Emden--Fowler Type Equations
JO  - Matematičeskie zametki
PY  - 2015
SP  - 103
EP  - 114
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a10/
LA  - ru
ID  - MZM_2015_97_1_a10
ER  - 
%0 Journal Article
%A V. S. Samovol
%T On the Asymptotic Estimates of Solutions of Emden--Fowler Type Equations
%J Matematičeskie zametki
%D 2015
%P 103-114
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a10/
%G ru
%F MZM_2015_97_1_a10
V. S. Samovol. On the Asymptotic Estimates of Solutions of Emden--Fowler Type Equations. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 103-114. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a10/

[1] R. Bellman, Teoriya ustoichivosti reshenii differentsialnykh uravnenii, URSS, M., 2003 | MR

[2] V. S. Samovol, “O resheniyakh uravnenii tipa Emdena–Faulera”, Matem. zametki, 95:5 (2014), 775–789 | DOI

[3] V. A. Kondratev, V. S. Samovol, “O nekotorykh asimptoticheskikh svoistvakh reshenii uravnenii tipa Emdena–Faulera”, Differents. uravneniya, 17:4 (1981), 749–750

[4] I. T. Kiguradze, T. F. Chanturiya, Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | MR | Zbl

[5] I. T. Kiguradze, “O koleblemosti reshenii uravneniya $\frac{d^mu}{dt^m}+a(t)|u|^n\operatorname{sign}u=0$”, Matem. sb., 65:2 (1964), 172–187 | MR | Zbl

[6] V. S. Samovol, “O neostsilliruyuschikh resheniyakh uravnenii tipa Emdena–Faulera”, Matem. zametki, 95:6 (2014), 911–925 | DOI

[7] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, M., Nauka, 1998 | MR | Zbl

[8] A. D. Bryuno, “Asimptotiki i razlozheniya reshenii obyknovennogo differentsialnogo uravneniya”, UMN, 59:3 (2004), 31–80 | DOI | MR | Zbl

[9] I. V. Astashova, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, M., YuNITI-DANA, 2012