On the Regularity of Solutions of the Cauchy Problem for the Zakharov--Kuznetsov Equation in H\"older Norms
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the interior regularity of generalized solutions of the Cauchy problem for the Zakharov–Kuznetsov equation is studied. The existence of Hölder-continuous derivatives of given solutions is established. The study is based on the properties of the fundamental solution of the corresponding linearized equation.
Keywords: Zakharov–Kuznetsov equation, Cauchy problem, interior regularity of a solution, Korteweg–de Vries equation.
@article{MZM_2015_97_1_a1,
     author = {A. P. Antonova and A. V. Faminskii},
     title = {On the {Regularity} of {Solutions} of the {Cauchy} {Problem} for the {Zakharov--Kuznetsov} {Equation} in {H\"older} {Norms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {13--22},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a1/}
}
TY  - JOUR
AU  - A. P. Antonova
AU  - A. V. Faminskii
TI  - On the Regularity of Solutions of the Cauchy Problem for the Zakharov--Kuznetsov Equation in H\"older Norms
JO  - Matematičeskie zametki
PY  - 2015
SP  - 13
EP  - 22
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a1/
LA  - ru
ID  - MZM_2015_97_1_a1
ER  - 
%0 Journal Article
%A A. P. Antonova
%A A. V. Faminskii
%T On the Regularity of Solutions of the Cauchy Problem for the Zakharov--Kuznetsov Equation in H\"older Norms
%J Matematičeskie zametki
%D 2015
%P 13-22
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a1/
%G ru
%F MZM_2015_97_1_a1
A. P. Antonova; A. V. Faminskii. On the Regularity of Solutions of the Cauchy Problem for the Zakharov--Kuznetsov Equation in H\"older Norms. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a1/

[1] V. E. Zakharov, E. A. Kuznetsov, “O trekhmernykh solitonakh”, ZhETF, 66:2 (1974), 594–597

[2] A. V. Faminskii, “Zadacha Koshi dlya uravneniya Zakharova–Kuznetsova”, Differents. uravneniya, 31:6 (1995), 1070–1081 | MR | Zbl

[3] A. V. Faminskii, “Zadacha Koshi dlya kvazilineinykh uravnenii nechetnogo poryadka”, Matem. sb., 180:9 (1989), 1183–1210 | MR | Zbl

[4] J. L. Levandosky, “Smoothing properties of nonlinear dispersive equations in two spatial dimensions”, J. Differential Equations, 175:2 (2001), 275–352 | DOI | MR | Zbl

[5] A. V. Faminskii, A. P. Antonova, “On internal regularity of solutions to the initial value problem for the Zakharov–Kuznetsov equation”, Progress in Partial Differential Equations, Springer Proc. in Math. Stat., 44, Springer, Cham, 2013, 53–74 | Zbl

[6] A. V. Faminskii, “Zadacha Koshi dlya uravneniya Kortevega–de Friza i ego obobschenii”, Tr. sem. im. I. G. Petrovskogo, 13 (1988), 56–105 | MR | Zbl

[7] S. N. Kruzhkov, A. V. Faminskii, “Obobschennye resheniya zadachi Koshi dlya uravneniya Kortevega–de Friza”, Matem. sb., 120:3 (1983), 396–425 | MR | Zbl

[8] F. Linares, A. Pastor, “Well-posedness for the two-dimensional modified Zakharov–Kuznetsov equation”, SIAM J. Math. Anal., 41:4 (2009), 1323–1339 | DOI | MR | Zbl

[9] S. N. Kruzhkov, A. V. Faminskii, “O svoistvakh nepreryvnosti reshenii nekotorykh klassov nestatsionarnykh uravnenii”, Vestn. Mosk. un-ta. Ser. 1, Matem., mekh., 1983, no. 3, 29–36 | MR | Zbl