Sharpening of the Universality Inequality
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 905-910

Voir la notice de l'article provenant de la source Math-Net.Ru

The universality theorem asserts that the lower density of any set of shifts of the Riemann zeta-function which approximate a given analytic function with accuracy $\varepsilon>0$ is strictly positive. It is proved that this set has strictly positive density for all but at most countably many $\varepsilon>0$.
Keywords: universality theorem, universality inequality, Riemann zeta-function, approximation of analytic functions.
@article{MZM_2014_96_6_a9,
     author = {A. Laurin\v{c}ikas and L. Me\v{s}ka},
     title = {Sharpening of the {Universality} {Inequality}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {905--910},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a9/}
}
TY  - JOUR
AU  - A. Laurinčikas
AU  - L. Meška
TI  - Sharpening of the Universality Inequality
JO  - Matematičeskie zametki
PY  - 2014
SP  - 905
EP  - 910
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a9/
LA  - ru
ID  - MZM_2014_96_6_a9
ER  - 
%0 Journal Article
%A A. Laurinčikas
%A L. Meška
%T Sharpening of the Universality Inequality
%J Matematičeskie zametki
%D 2014
%P 905-910
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a9/
%G ru
%F MZM_2014_96_6_a9
A. Laurinčikas; L. Meška. Sharpening of the Universality Inequality. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 905-910. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a9/