Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_6_a9, author = {A. Laurin\v{c}ikas and L. Me\v{s}ka}, title = {Sharpening of the {Universality} {Inequality}}, journal = {Matemati\v{c}eskie zametki}, pages = {905--910}, publisher = {mathdoc}, volume = {96}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a9/} }
A. Laurinčikas; L. Meška. Sharpening of the Universality Inequality. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 905-910. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a9/
[1] S. M. Voronin, “Teorema o raspredelenii znachenii dzeta-funktsii Rimana”, Dokl. AH SSSR, 221:4 (1975), 771 | MR | Zbl
[2] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl
[3] S. M. Voronin, Izbrannye trudy. Matematika, ed. A. A. Karatsuba, Izd. MGTU im. N. E. Baumana, M., 2006
[4] A. Laurinčikas, “The universality of zeta-functions”, Acta Appl. Math., 78:1-3 (2003), 254–271 | MR | Zbl
[5] K. Matsumoto, “Probabilistic value-distribution theory of zeta-functions”, Sugaku, 53:3 (2001), 279–296 | MR | Zbl
[6] K. Matsumoto, “Some problems on mean values and the universality of zeta and multiple zeta-functions”, Analytic and Probabilistic Methods in Number Theory, TEV, Vilnius, 2002, 195–199 | MR | Zbl
[7] A. Laurinčikas, “Universality results for the Riemann zeta-function”, Moscow J. Combin. Number Theory, 3:3-4 (2013), 98–117
[8] B. Bagchi, The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, Ph.D. Thesis, Indian Statistical Institute, Calcutta, 1981
[9] S. M. Gonek, Analytic Properties of Zeta and $L$-Functions, Ph.D. Thesis, University of Michigan, 1979
[10] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996 | MR
[11] A. Laurinčikas, A. Garunkštis, The Lerch Zeta-Function, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl
[12] J. Steuding, Value-Distribution of $L$-Functions, Lect. Notes in Math., 1877, Springer-Verlag, Berlin, 2007 | DOI | MR | Zbl
[13] A. Laurinčikas, “Universality of the Riemann zeta-function”, J. Number Theory, 130:10 (2010), 2323–2331 | DOI | MR | Zbl
[14] A. Laurinčikas, “Universality of composite functions”, Functions in Number Theory and Their Probabilistic Aspects, RIMS Kôkyôroku Bessatsu, B34, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, 191–204 | MR | Zbl
[15] A. Laurinčikas, “On joint universality of the Riemann zeta-function and Hurwitz zeta-functions”, J. Number Theory, 132:12 (2012), 2842–2853 | DOI | MR | Zbl
[16] S. N. Mergelyan, “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 | MR | Zbl
[17] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ., 20, Amer. Math. Soc., Providence, RI, 1960 | MR | Zbl
[18] P. Billingsley, Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl