On a Criterion for the Invertibility of Integral Operators of the Second Kind in the Space of Summable Functions on the Semiaxis
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 849-855.

Voir la notice de l'article provenant de la source Math-Net.Ru

To establish a criterion for the invertibility of integral operators of the second kind in terms of the kernel of the integral part of this operator, a special factorization method is applied. We present a transformation reducing the problem of the invertibility of such an operator to that of the inversion of an integral operator of the second kind with contracting integral part.
Keywords: criterion for the invertibility of integral operators, integral operator of the second kind, contraction operator, invertibility conditions.
@article{MZM_2014_96_6_a3,
     author = {G. A. Grigoryan},
     title = {On a {Criterion} for the {Invertibility} of {Integral} {Operators} of the {Second} {Kind} in the {Space} of {Summable} {Functions} on the {Semiaxis}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {849--855},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a3/}
}
TY  - JOUR
AU  - G. A. Grigoryan
TI  - On a Criterion for the Invertibility of Integral Operators of the Second Kind in the Space of Summable Functions on the Semiaxis
JO  - Matematičeskie zametki
PY  - 2014
SP  - 849
EP  - 855
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a3/
LA  - ru
ID  - MZM_2014_96_6_a3
ER  - 
%0 Journal Article
%A G. A. Grigoryan
%T On a Criterion for the Invertibility of Integral Operators of the Second Kind in the Space of Summable Functions on the Semiaxis
%J Matematičeskie zametki
%D 2014
%P 849-855
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a3/
%G ru
%F MZM_2014_96_6_a3
G. A. Grigoryan. On a Criterion for the Invertibility of Integral Operators of the Second Kind in the Space of Summable Functions on the Semiaxis. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 849-855. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a3/

[1] Z. Presdorf, Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR | Zbl

[2] N. B. Engibaryan, B. N. Engibaryan, “Integralnoe uravnenie svertki na polupryamoi s vpolne monotonnym yadrom”, Matem. sb., 187:10 (1996), 53–72 | DOI | MR | Zbl

[3] N. B. Engibaryan, “Postanovka i reshenie nekotorykh zadach faktorizatsii integralnykh operatorov”, Matem. sb., 191:12 (2000), 61–76 | DOI | MR | Zbl

[4] G. A. Grigoryan, “Spetsialnaya faktorizatsiya neobratimogo operatora Fredgolma vtorogo roda”, Differents. uravneniya, 38:12 (2002), 1690–1697 | MR | Zbl

[5] G. A. Grigoryan, “Spetsialnaya faktorizatsiya neobratimogo integralnogo operatora Fredgolma vtorogo roda s yadrom Gilberta–Shmidta”, Matem. sb., 198:5 (2007), 33–44 | DOI | MR | Zbl

[6] G. A. Grigoryan, “Voprosy razreshimosti dlya odnogo klassa integralnykh uravnenii Vinera–Khopfa”, Izv. NAN. Armenii. Matem., 31:2 (1996), 27–39 | MR | Zbl

[7] G. A. Grigoryan, “Uravneniya Vinera–Khopfa v zakriticheskom sluchae”, Izv. NAN. Armenii. Matem., 32:1 (1997), 60–74 | MR | Zbl