Mots-clés : Poisson integral
@article{MZM_2014_96_6_a13,
author = {Yu. I. Kharkevich and T. A. Stepanyuk},
title = {Approximation {Properties} of {Poisson} {Integrals} for the {Classes~}$C^{\psi}_{\beta}H^{\alpha}$},
journal = {Matemati\v{c}eskie zametki},
pages = {939--952},
year = {2014},
volume = {96},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a13/}
}
TY - JOUR
AU - Yu. I. Kharkevich
AU - T. A. Stepanyuk
TI - Approximation Properties of Poisson Integrals for the Classes $C^{\psi}_{\beta}H^{\alpha}$
JO - Matematičeskie zametki
PY - 2014
SP - 939
EP - 952
VL - 96
IS - 6
UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a13/
LA - ru
ID - MZM_2014_96_6_a13
ER -
Yu. I. Kharkevich; T. A. Stepanyuk. Approximation Properties of Poisson Integrals for the Classes $C^{\psi}_{\beta}H^{\alpha}$. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 939-952. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a13/
[1] A. I. Stepanets, Klassifikatsiya i priblizhenie periodicheskikh funktsii, Naukova dumka, Kiev, 1987 | MR | Zbl
[2] A. I. Stepanets, Metody teorii priblizhenii. I, Tr. In-ta matem. NAN Ukrainy, 40, In-t matem. NAN Ukrainy, Kiev, 2002 | MR | Zbl
[3] V. A. Baskakov, “O nekotorykh svoistvakh operatorov tipa operatorov Abelya–Puassona”, Matem. zametki, 17:2 (1975), 169–180 | MR | Zbl
[4] S. M. Nikolskii, “Asimptoticheskaya otsenka ostatka pri priblizhenii summami Fure”, Dokl. AN SSSR, 32:6 (1941), 386–389 | MR | Zbl
[5] S. M. Nikolskii, “Priblizhenie periodicheskikh funktsii trigonometricheskimi mnogochlenami”, Tr. Matem. in-ta im. V. A. Steklova, 15, Izd-vo AN SSSR, M.–L., 1945, 3–76 | MR | Zbl
[6] B. Nagy, “Sur une classe générale de procédés de sommation pour les séries de Fourier”, Hung. Acta Math., 1 (1948), 14–52 | Zbl
[7] A. F. Timan, “Approksimativnye svoistva lineinykh metodov summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 17:2 (1953), 99–134 | MR | Zbl
[8] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[9] A. I. Stepanets, Ravnomernye priblizheniya trigonometricheskimi polinomami. Lineinye metody, Naukova dumka, Kiev, 1981 | MR | Zbl
[10] V. T. Gavrilyuk, A. I. Stepanets, “Priblizhenie differentsiruemykh funktsii polinomami Rogozinskogo”, Ukr. matem. zhurn., 25:1 (1973), 3–13 | Zbl
[11] A. V. Efimov, “Lineinye metody priblizheniya nekotorykh klassov nepreryvnykh periodicheskikh funktsii”, Sbornik rabot po lineinym metodam summirovaniya ryadov Fure, Tr. MIAN SSSR, 62, Izd-vo AN SSSR, M., 1961, 3–47 | MR | Zbl
[12] A. S. Serdyuk, E. Yu. Ovsii, “Approximation of the classes $C^{\psi}_{\beta}H_\omega$ by generalized Zygmund sums”, Ukrainian Math. J., 61:4 (2009), 627–644 | DOI | MR | Zbl
[13] E. Yu. Ovsii, “Nablizhennya klasiv $C^{\psi}_{\beta}H_\omega$ uzagalnenimi trigonometrichnimi polinomami”, Preprint NAN Ukraïni, In-t matematiki NAN Ukraïni, Kiïv, 2009
[14] L. I. Bausov, “Lineinye metody summirovaniya ryadov Fure s zadannymi pryamougolnymi matritsami, II”, Izv. vuzov. Matem., 1966, no. 6, 3–17 | MR | Zbl
[15] T. V. Zhyhallo, Yu. I. Kharkevych, “Approximation of $(\psi,\beta)$-differentiable functions by Poisson integrals in the uniform metric”, Ukrainian Math. J., 61:11 (2009), 1757–1779 | DOI | MR
[16] T. V. Zhyhallo, Yu. I. Kharkevych, “Approximation of functions from the class $C^{\psi}_{\beta\infty}$ by Poisson integrals in the uniform metric”, Ukrainian Math. J., 61:12 (2009), 1893–1914 | DOI | MR | Zbl