Wavelet Expansions on the Cantor Group
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 926-938
Voir la notice de l'article provenant de la source Math-Net.Ru
The wavelet expansions in $L^p$-spaces on a locally compact Cantor group $G$ are studied. An order-sharp estimate of the wavelet approximation of an arbitrary function $f\in L^p(G)$ for $1\leqslant p\infty$, in terms of the modulus of continuity of this function is obtained, and a Jackson–Bernstein type theorem on the approximation by wavelets of functions from the class $\operatorname{Lip}^{(p)}(\alpha;G)$ is proved.
Keywords:
wavelet expansion, Cantor group, $L^p$-space, Jackson–Bernstein type theorem, the class $\operatorname{Lip}^{(p)}(\alpha;G)$, modulus of continuity, Walsh polynomial
Mots-clés : Fourier transform.
Mots-clés : Fourier transform.
@article{MZM_2014_96_6_a12,
author = {Yu. A. Farkov},
title = {Wavelet {Expansions} on the {Cantor} {Group}},
journal = {Matemati\v{c}eskie zametki},
pages = {926--938},
publisher = {mathdoc},
volume = {96},
number = {6},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a12/}
}
Yu. A. Farkov. Wavelet Expansions on the Cantor Group. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 926-938. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a12/