Wavelet Expansions on the Cantor Group
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 926-938.

Voir la notice de l'article provenant de la source Math-Net.Ru

The wavelet expansions in $L^p$-spaces on a locally compact Cantor group $G$ are studied. An order-sharp estimate of the wavelet approximation of an arbitrary function $f\in L^p(G)$ for $1\leqslant p\infty$, in terms of the modulus of continuity of this function is obtained, and a Jackson–Bernstein type theorem on the approximation by wavelets of functions from the class $\operatorname{Lip}^{(p)}(\alpha;G)$ is proved.
Keywords: wavelet expansion, Cantor group, $L^p$-space, Jackson–Bernstein type theorem, the class $\operatorname{Lip}^{(p)}(\alpha;G)$, modulus of continuity, Walsh polynomial
Mots-clés : Fourier transform.
@article{MZM_2014_96_6_a12,
     author = {Yu. A. Farkov},
     title = {Wavelet {Expansions} on the {Cantor} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {926--938},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a12/}
}
TY  - JOUR
AU  - Yu. A. Farkov
TI  - Wavelet Expansions on the Cantor Group
JO  - Matematičeskie zametki
PY  - 2014
SP  - 926
EP  - 938
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a12/
LA  - ru
ID  - MZM_2014_96_6_a12
ER  - 
%0 Journal Article
%A Yu. A. Farkov
%T Wavelet Expansions on the Cantor Group
%J Matematičeskie zametki
%D 2014
%P 926-938
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a12/
%G ru
%F MZM_2014_96_6_a12
Yu. A. Farkov. Wavelet Expansions on the Cantor Group. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 926-938. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a12/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Izd-vo LKI, M., 2008 | MR

[2] F. Schipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990 | MR

[3] W. C. Lang, “Orthogonal wavelets on the Cantor dyadic group”, SIAM J. Math. Anal., 27:1 (1996), 305–312 | DOI | MR | Zbl

[4] W. C. Lang, “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24:3 (1998), 533–544 | MR | Zbl

[5] W. C. Lang, “Fractal multiwavelets related to the Cantor dyadic group”, Internat. J. Math. Math. Sci., 21:2 (1998), 307–314 | DOI | MR | Zbl

[6] Yu. A. Farkov, “Wavelets and frames in Walsh analysis”, Wavelets: Classification, Theory and Applications, Chapter 11, Nova Sci. Publ., New York, 2012, 267–304

[7] Yu. A. Farkov, “Periodic wavelets in Walsh analysis”, Commun. Math. Appl., 3:3 (2012), 223–242

[8] Yu. A. Farkov, U. Goginava, T. Kopaliani, “Unconditional convergence of wavelet expansion on the Cantor dyadic group”, Jaen J. Approx., 3:1 (2011), 117–133 | MR | Zbl

[9] Yu. A. Farkov, “Orthogonal $p$-wavelets on $\mathbb{R}_+$”, Wavelets and Splines (St. Petersburg, Russia, July 3–8, 2003), St. Petersburg Univ. Press, St. Petersburg, 2005, 4–26 | MR | Zbl

[10] V. Yu. Protasov, Yu. A. Farkov, “Diadicheskie veivlety i masshtabiruyuschie funktsii na polupryamoi”, Matem. sb., 197:10 (2006), 129–160 | DOI | MR | Zbl

[11] Yu. A. Farkov, “On wavelets related to the Walsh series”, J. Approx. Theory, 161:1 (2009), 259–279 | DOI | MR | Zbl

[12] V. Yu. Protasov, “Approksimatsiya diadicheskimi vspleskami”, Matem. sb., 198:11 (2007), 135–152 | DOI | MR | Zbl

[13] Yu. A. Farkov, “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | DOI | MR | Zbl

[14] Yu. A. Farkov, “Ortogonalnye veivlety na pryamykh proizvedeniyakh tsiklicheskikh grupp”, Matem. zametki, 82:6 (2007), 934–952 | DOI | MR | Zbl

[15] Yu. A. Farkov, E. A. Rodionov, “Algorithms for wavelet construction on Vilenkin groups”, $p$-Adic Numbers Ultrametric Anal. Appl., 3:3 (2011), 181–195 | DOI | MR | Zbl

[16] M. A. Pinsky, Introduction to Fourier Analysis and Wavelets, Brooks/Cole Ser. Adv. Math., Brooks/Cole, Pacific Grove, CA, 2002 | MR | Zbl

[17] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR | Zbl

[18] R. Q. Jia, “A Bernstein-type inequality associated with wavelet decomposition”, Constr. Approx., 9:2 (1993), 299–318 | DOI | MR | Zbl

[19] E. Hernández, G. Weiss, A First Course on Wavelets, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1996 | MR | Zbl

[20] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz. T. 1. Struktura topologicheskikh grupp. Teoriya integrirovaniya. Predstavleniya grupp, Nauka, M., 1975 | MR | Zbl

[21] S. Igari, Real Analysis – With an Introduction to Wavelet Theory, Transl. Math. Monogr., 177, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[22] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl