Wavelet Expansions on the Cantor Group
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 926-938

Voir la notice de l'article provenant de la source Math-Net.Ru

The wavelet expansions in $L^p$-spaces on a locally compact Cantor group $G$ are studied. An order-sharp estimate of the wavelet approximation of an arbitrary function $f\in L^p(G)$ for $1\leqslant p\infty$, in terms of the modulus of continuity of this function is obtained, and a Jackson–Bernstein type theorem on the approximation by wavelets of functions from the class $\operatorname{Lip}^{(p)}(\alpha;G)$ is proved.
Keywords: wavelet expansion, Cantor group, $L^p$-space, Jackson–Bernstein type theorem, the class $\operatorname{Lip}^{(p)}(\alpha;G)$, modulus of continuity, Walsh polynomial
Mots-clés : Fourier transform.
@article{MZM_2014_96_6_a12,
     author = {Yu. A. Farkov},
     title = {Wavelet {Expansions} on the {Cantor} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {926--938},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a12/}
}
TY  - JOUR
AU  - Yu. A. Farkov
TI  - Wavelet Expansions on the Cantor Group
JO  - Matematičeskie zametki
PY  - 2014
SP  - 926
EP  - 938
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a12/
LA  - ru
ID  - MZM_2014_96_6_a12
ER  - 
%0 Journal Article
%A Yu. A. Farkov
%T Wavelet Expansions on the Cantor Group
%J Matematičeskie zametki
%D 2014
%P 926-938
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a12/
%G ru
%F MZM_2014_96_6_a12
Yu. A. Farkov. Wavelet Expansions on the Cantor Group. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 926-938. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a12/