On the Uniqueness of the Solution of the Flow Problem with a Given Vortex
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 820-826.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the two-dimensional nonstationary Euler equations of an ideal incompressible fluid, the flow problem with a given vortex is considered. The uniqueness of the solution is proved.
Keywords: flow problem with vortex, ideal incompressible fluid, Euler system of equations, harmonic function, Fourier series.
@article{MZM_2014_96_6_a1,
     author = {V. A. Vaigant and A. A. Papin},
     title = {On the {Uniqueness} of the {Solution} of the {Flow} {Problem} with a {Given} {Vortex}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {820--826},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a1/}
}
TY  - JOUR
AU  - V. A. Vaigant
AU  - A. A. Papin
TI  - On the Uniqueness of the Solution of the Flow Problem with a Given Vortex
JO  - Matematičeskie zametki
PY  - 2014
SP  - 820
EP  - 826
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a1/
LA  - ru
ID  - MZM_2014_96_6_a1
ER  - 
%0 Journal Article
%A V. A. Vaigant
%A A. A. Papin
%T On the Uniqueness of the Solution of the Flow Problem with a Given Vortex
%J Matematičeskie zametki
%D 2014
%P 820-826
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a1/
%G ru
%F MZM_2014_96_6_a1
V. A. Vaigant; A. A. Papin. On the Uniqueness of the Solution of the Flow Problem with a Given Vortex. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 820-826. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a1/

[1] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | MR | Zbl

[2] V. I. Yudovich, “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 3:6 (1963), 1032–1066 | MR | Zbl

[3] V. I. Yudovich, “Uniqueness theorem for the nonstationary problem in the dynamics of an ideal incompressible fluid”, Math. Res. Lett., 2:1 (1995), 27–38 | DOI | MR | Zbl

[4] M. Vishik, “Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type”, Ann. Sci. École Norm. Sup. (4), 32:6 (1999), 769–812 | MR | Zbl

[5] M. I. Uvarovskaya, Primenenie prostranstv Orlicha v zadachakh dinamiki idealnoi neszhimaemoi zhidkosti, Dis. kand. fiz.-matem. nauk, Novosibirsk, 2009

[6] A. E. Mamontov, “On the uniqueness of solutions to boundary value problem for non-stationary Euler equations”, New Directions in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2009, 281–299 | MR

[7] V. I. Yudovich, Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo Rostovsk. un-ta, Rostov, 1984