Affine Cylinders
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 697-700
Cet article a éte moissonné depuis la source Math-Net.Ru
An affine cylinder is defined as a surface for which all affine normals are parallel to the same plane. It is proved that a complete strictly convex affine cylinder is a translation surface whose line of translation is a parabola.
Keywords:
affine cylinder, complete strictly convex affine cylinder, translation surface
Mots-clés : affine normal, Hessian matrix.
Mots-clés : affine normal, Hessian matrix.
@article{MZM_2014_96_5_a5,
author = {V. N. Kokarev},
title = {Affine {Cylinders}},
journal = {Matemati\v{c}eskie zametki},
pages = {697--700},
year = {2014},
volume = {96},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a5/}
}
V. N. Kokarev. Affine Cylinders. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 697-700. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a5/
[1] P. A. Shirokov, A. P. Shirokov, Affinnaya differentsialnaya geometriya, Fizmatgiz, M., 1959 | MR | Zbl
[2] E. Calabi, “Complete affine hyperspheres. I”, Sympos. Math., 10 (1972), 19–38 | MR | Zbl
[3] S. T. Cheng, S. T. Yau, “Complete affine hypersurfaces. Part I. The completeness of affine metrics”, Comm. Pure Appl. Math., 39:6 (1986), 839–866 | DOI | MR | Zbl
[4] A. V. Pogorelov, Mnogomernoe uravnenie Monzha–Ampera $\det\|z_{ij}\|=\varphi(z_1,\dots,z_n,z, x_1,\dots,x_n)$, Nauka, M., 1988 | MR | Zbl