Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_5_a5, author = {V. N. Kokarev}, title = {Affine {Cylinders}}, journal = {Matemati\v{c}eskie zametki}, pages = {697--700}, publisher = {mathdoc}, volume = {96}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a5/} }
V. N. Kokarev. Affine Cylinders. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 697-700. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a5/
[1] P. A. Shirokov, A. P. Shirokov, Affinnaya differentsialnaya geometriya, Fizmatgiz, M., 1959 | MR | Zbl
[2] E. Calabi, “Complete affine hyperspheres. I”, Sympos. Math., 10 (1972), 19–38 | MR | Zbl
[3] S. T. Cheng, S. T. Yau, “Complete affine hypersurfaces. Part I. The completeness of affine metrics”, Comm. Pure Appl. Math., 39:6 (1986), 839–866 | DOI | MR | Zbl
[4] A. V. Pogorelov, Mnogomernoe uravnenie Monzha–Ampera $\det\|z_{ij}\|=\varphi(z_1,\dots,z_n,z, x_1,\dots,x_n)$, Nauka, M., 1988 | MR | Zbl