Criterion for the Complete Indeterminacy of the Nevanlinna--Pick Matrix Problem
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 658-673.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new criterion for the complete indeterminacy of the classical matrix problem and of the Nevanlinna–Pick matrix problem in terms of the convergence of two matrix series. The elements of these series are positive matrices and are expressed by analogs of the classical Schur parameters.
Keywords: Nevanlinna–Pick matrix problem, Hermitian matrix, Nevanlinna matrix function, matrix series, Schur parameter, resolvent matrix, Weyl matrix disk, Blaschke–Potapov multiplier.
@article{MZM_2014_96_5_a2,
     author = {Yu. M. Dyukarev and A. E. Choque Rivero},
     title = {Criterion for the {Complete} {Indeterminacy} of the {Nevanlinna--Pick} {Matrix} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {658--673},
     publisher = {mathdoc},
     volume = {96},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a2/}
}
TY  - JOUR
AU  - Yu. M. Dyukarev
AU  - A. E. Choque Rivero
TI  - Criterion for the Complete Indeterminacy of the Nevanlinna--Pick Matrix Problem
JO  - Matematičeskie zametki
PY  - 2014
SP  - 658
EP  - 673
VL  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a2/
LA  - ru
ID  - MZM_2014_96_5_a2
ER  - 
%0 Journal Article
%A Yu. M. Dyukarev
%A A. E. Choque Rivero
%T Criterion for the Complete Indeterminacy of the Nevanlinna--Pick Matrix Problem
%J Matematičeskie zametki
%D 2014
%P 658-673
%V 96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a2/
%G ru
%F MZM_2014_96_5_a2
Yu. M. Dyukarev; A. E. Choque Rivero. Criterion for the Complete Indeterminacy of the Nevanlinna--Pick Matrix Problem. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 658-673. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a2/

[1] I. V. Kovalishina, V. P. Potapov, “Indefinitnaya metrika v probleme Nevanlinny–Pika”, Dokl. AN Arm. SSR, 59:1 (1974), 17–22 | MR | Zbl

[2] I. P. Fedchina, “Kriterii razreshimosti kasatelnoi problemy Nevanlinny–Pika”, Matem. issledovaniya, 7:4 (26) (1972), 213–226

[3] A. A. Nudelman, “Ob odnoi probleme tipa problemy momentov”, Dokl. AN SSSR, 233:5 (1977), 792–795 | MR | Zbl

[4] I. V. Kovalishina, “Analiticheskaya teoriya odnogo klassa interpolyatsionnykh zadach”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 455–497 | MR | Zbl

[5] D. Z. Arov, H. Dym, $J$-Contractive Matrix Valued Functions and Related Topics, Encyclopedia Math. Appl., 116, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl

[6] Yu. L. Shmulyan, “Operatornye shary”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 6, Izd-vo Khark. un-ta, Kharkov, 1968, 68–81

[7] V. K. Dubovoj, B. Fritzsche, B. Kirstein, Matricial Version of the Classical Schur Problem, Teubner-Texte Math., 129, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1992 | MR | Zbl

[8] S. A. Orlov, “Gnezdyaschiesya matrichnye krugi, analiticheski zavisyaschie ot parametra, i teoremy ob invariantnosti rangov radiusov predelnykh matrichnykh krugov”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 593–644 | MR | Zbl

[9] Yu. M. Dyukarev, “Faktorizatsiya operator-funktsii multiplikativnogo klassa Stiltesa”, Dokl. NAN Ukrainy, 2000, no. 9, 23–26 | MR | Zbl

[10] Yu. M. Dyukarev, “O neopredelennosti interpolyatsionnykh zadach v klasse Stiltesa”, Matem. sb., 196:3 (2005), 61–88 | DOI | MR | Zbl

[11] V. P. Potapov, “Multiplikativnaya struktura $J$-nerastyagivayuschikh matrits-funktsii”, Tr. MMO, 4, GITTL, M., 1955, 125–236 | MR | Zbl

[12] Yu. M. Dyukarev, “Integral representations of a pair of nonnegative operators and interpolation problems in the Stieltjes class”, Topics in Interpolation Theory, Oper. Theory Adv. Appl., 95, Birkhäuser, Basel, 1997, 165–184 | MR | Zbl

[13] Yu. M. Dyukarev, “Obschaya skhema resheniya interpolyatsionnykh zadach v klasse Stiltesa, osnovannaya na soglasovannykh integralnykh predstavleniyakh par neotritsatelnykh operatorov. I”, Matem. fiz., anal., geom., 6:1/2 (1999), 30–54 | MR | Zbl

[14] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR | Zbl

[15] M. G. Krein, “Osnovnye polozheniya teorii predstavleniya ermitovykh operatorov s indeksom defekta $(m,m)$”, Ukr. matem. zhurn., 1:2 (1949), 3–66 | MR | Zbl

[16] M. G. Krein, “Beskonechnye $J$ matritsy i matrichnaya problema momentov”, Dokl. AN SSSR, 69:3 (1949), 125–128 | MR | Zbl

[17] V. I. Kogan, “Ob operatorakh, porozhdennykh $l_p$-matritsami v sluchae maksimalnykh indeksov defekta”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 11, Izd-vo Khark. un-ta, Kharkov, 1970, 103–107 | MR | Zbl

[18] Yu. M. Dyukarev, “O defektnykh chislakh simmetricheskikh operatorov, porozhdennykh blochnymi matritsami Yakobi”, Matem. sb., 197:8 (2006), 73–100 | DOI | MR | Zbl

[19] Yu. M. Dyukarev, “Primery blochnykh matrits Yakobi, porozhdayuschikh simmetricheskie operatory s lyubymi vozmozhnymi defektnymi chislami”, Matem. sb., 201:12 (2010), 83–92 | DOI | MR | Zbl