On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 773-789

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the existence and uniqueness of continuous solutions of Volterra operator equations of the first kind with piecewise determined kernels. For the case in which the solution is not unique, we prove existence theorems for the parametric families of solutions and present their asymptotics in the form of logarithmic polynomials.
Keywords: Volterra operator equation, Banach space, asymptotic approximation, successive approximation method, Fredholm point, Fredholm operator
Mots-clés : Jordan set.
@article{MZM_2014_96_5_a12,
     author = {N. A. Sidorov and D. N. Sidorov},
     title = {On the {Solvability} of a {Class} of {Volterra} {Operator} {Equations} of the {First} {Kind} with {Piecewise} {Continuous} {Kernels}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {773--789},
     publisher = {mathdoc},
     volume = {96},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/}
}
TY  - JOUR
AU  - N. A. Sidorov
AU  - D. N. Sidorov
TI  - On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels
JO  - Matematičeskie zametki
PY  - 2014
SP  - 773
EP  - 789
VL  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/
LA  - ru
ID  - MZM_2014_96_5_a12
ER  - 
%0 Journal Article
%A N. A. Sidorov
%A D. N. Sidorov
%T On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels
%J Matematičeskie zametki
%D 2014
%P 773-789
%V 96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/
%G ru
%F MZM_2014_96_5_a12
N. A. Sidorov; D. N. Sidorov. On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 773-789. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/