On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 773-789
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain sufficient conditions for the existence and uniqueness of continuous solutions of Volterra operator equations of the first kind with piecewise determined kernels. For the case in which the solution is not unique, we prove existence theorems for the parametric families of solutions and present their asymptotics in the form of logarithmic polynomials.
Keywords:
Volterra operator equation, Banach space, asymptotic approximation, successive approximation method, Fredholm point, Fredholm operator
Mots-clés : Jordan set.
Mots-clés : Jordan set.
@article{MZM_2014_96_5_a12,
author = {N. A. Sidorov and D. N. Sidorov},
title = {On the {Solvability} of a {Class} of {Volterra} {Operator} {Equations} of the {First} {Kind} with {Piecewise} {Continuous} {Kernels}},
journal = {Matemati\v{c}eskie zametki},
pages = {773--789},
publisher = {mathdoc},
volume = {96},
number = {5},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/}
}
TY - JOUR AU - N. A. Sidorov AU - D. N. Sidorov TI - On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels JO - Matematičeskie zametki PY - 2014 SP - 773 EP - 789 VL - 96 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/ LA - ru ID - MZM_2014_96_5_a12 ER -
%0 Journal Article %A N. A. Sidorov %A D. N. Sidorov %T On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels %J Matematičeskie zametki %D 2014 %P 773-789 %V 96 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/ %G ru %F MZM_2014_96_5_a12
N. A. Sidorov; D. N. Sidorov. On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 773-789. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/