On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 773-789.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the existence and uniqueness of continuous solutions of Volterra operator equations of the first kind with piecewise determined kernels. For the case in which the solution is not unique, we prove existence theorems for the parametric families of solutions and present their asymptotics in the form of logarithmic polynomials.
Keywords: Volterra operator equation, Banach space, asymptotic approximation, successive approximation method, Fredholm point, Fredholm operator
Mots-clés : Jordan set.
@article{MZM_2014_96_5_a12,
     author = {N. A. Sidorov and D. N. Sidorov},
     title = {On the {Solvability} of a {Class} of {Volterra} {Operator} {Equations} of the {First} {Kind} with {Piecewise} {Continuous} {Kernels}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {773--789},
     publisher = {mathdoc},
     volume = {96},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/}
}
TY  - JOUR
AU  - N. A. Sidorov
AU  - D. N. Sidorov
TI  - On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels
JO  - Matematičeskie zametki
PY  - 2014
SP  - 773
EP  - 789
VL  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/
LA  - ru
ID  - MZM_2014_96_5_a12
ER  - 
%0 Journal Article
%A N. A. Sidorov
%A D. N. Sidorov
%T On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels
%J Matematičeskie zametki
%D 2014
%P 773-789
%V 96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/
%G ru
%F MZM_2014_96_5_a12
N. A. Sidorov; D. N. Sidorov. On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 773-789. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a12/

[1] E. V. Markova, I. V. Sidler, V. V. Trufanov, “O modelyakh razvivayuschikhsya sistem tipa Glushkova i ikh prilozheniyakh v elektroenergetike”, Avtomat. i telemekh., 2011, no. 7, 20–28 | MR | Zbl

[2] Yu. P. Yatsenko, Integralnye modeli sistem s upravlyaemoi pamyatyu, Naukova dumka, Kiev, 1991 | MR | Zbl

[3] N. Hritonenko, Yu. Yatsenko, Modeling and Optimization of the Lifetime of Technologies, Kluwer Acad. Publ., Dordrecht, 1991 | MR

[4] A. M. Denisov, A. Lorenzi, “On a special Volterra integral equation of the first kind”, Boll. Un. Mat. Ital. B (7), 9:2 (1995), 443–457 | MR | Zbl

[5] N. A. Magnitskii, “Asimptotika reshenii integralnogo uravneniya Volterry pervogo roda”, Dokl. AN SSSR, 269:1 (1983), 29–32 | MR

[6] D. Sidorov, “Volterra equations of the first kind with discontinuous kernels in the theory of evolving systems control”, Stud. Inform. Univ., 9:3 (2011), 135–146

[7] N. A. Sidorov, D. N. Sidorov, “O malykh resheniyakh nelineinykh differentsialnykh uravnenii v okrestnosti tochek vetvleniya”, Izv. vuzov. Matem., 2011, no. 5, 53–61 | MR | Zbl

[8] D. N. Sidorov, “O razreshimosti sistem integralnykh uravnenii Volterra pervogo roda s kusochno-nepreryvnymi yadrami”, Izv. vuzov. Matem., 2013, no. 1, 62–72 | Zbl

[9] D. N. Sidorov, “O parametricheskikh semeistvakh reshenii integralnykh uravnenii Volterra I roda s kusochno-gladkimi yadrami”, Differents. uravneniya, 49:2 (2013), 209–215 | MR | Zbl

[10] D. N. Sidorov, N. A. Sidorov, “Convex majorants method in the theory of nonlinear Volterra equations”, Banach J. Math. Anal., 6:1 (2012), 1–10 | DOI | MR | Zbl

[11] N. A. Sidorov, D. N. Sidorov, “Suschestvovanie i postroenie obobschennykh reshenii integralnykh uravnenii Volterry pervogo roda”, Differents. uravneniya, 42:9 (2006), 1243–1247 | MR | Zbl

[12] N. A. Sidorov, D. N. Sidorov, A. V. Krasnik, “O reshenii operatorno-integralnykh uravnenii Volterry v neregulyarnom sluchae metodom posledovatelnykh priblizhenii”, Differents. uravneniya, 46:6 (2010), 874–882 | MR | Zbl

[13] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 2002 | MR

[14] D. Sidorov, “On impulsive control of nonlinear dynamical systems based on the Volterra series”, Proceedings of 10th IEEE International Conference on Environment and Electrical, IEEE Publ., Rome, 2011

[15] D. N. Sidorov, N. A. Sidorov, “Obobschennye resheniya v zadache modelirovaniya nelineinykh dinamicheskikh sistem polinomami Volterra”, Avtomat. i telemekh., 2011, no. 6, 127–132 | MR | Zbl

[16] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse and Ill-Posed Problems Ser., 42, Walter de Gruyter, Berlin, 2012

[17] N. A. Sidorov, D. N. Sidorov, “Integralnye uravneniya Volterra pervogo roda s kusochno-opredelennym yadrom v banakhovom prostranstve”, Neklassicheskie uravneniya matematicheskoi fiziki, Sb. nauch. statei, IM SO RAN, Novosibirsk, 2012

[18] D. N. Sidorov, “Generalized solution to the Volterra equations with piecewise continuous kernels”, Bull. Malays. Math. Sci. Soc. (2), 37:3 (2014), 757–768 | Zbl

[19] N. A. Sidorov, A. V. Trufanov, “Nelineinye operatornye uravneniya s funktsionalno vozmuschennym argumentom neitralnogo tipa”, Differents. uravneniya, 45:12 (2009), 1804–1808 | MR | Zbl

[20] L. A. Elsgolts, Kachestvennye metody v matematicheskom analize, GITTL, M., 1955

[21] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR | Zbl

[22] V. A. Trenogin, Funktsionalnyi analiz, Fizmatlit, M., 2007

[23] A. O. Gelfond, Ischislenie konechnykh raznostei, Fizmatlit, M., 1959 | MR | Zbl

[24] V. C. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Fizmatlit, M., 1976 | MR

[25] D. Sidorov, Integral Dynamical Models. Singularities, Signals and Control, World Sci. Ser. Nonlinear Sci. Ser. A, 87, World Sci., 2014