Formulas for Rational Interpolation and Remainders
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 762-772.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the existence of interpolating rational functions serving as Thiele continued fraction convergents and also presents the expression for the remainder for such rational interpolations. These problems are similar to multipoint Padé approximations. For the limit case, the expression for the remainder in diagonal Padé approximations at zero is obtained; also a sufficiently simple expression for the exact value of the remainder in the case of the function $\sqrt{1+z}$ is derived.
Mots-clés : rational interpolation
Keywords: Thiele continued fraction, continued fraction convergents, Padé approximation, remainder in the diagonal Padé approximation.
@article{MZM_2014_96_5_a11,
     author = {A. K. Ramazanov},
     title = {Formulas for {Rational} {Interpolation} and {Remainders}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {762--772},
     publisher = {mathdoc},
     volume = {96},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a11/}
}
TY  - JOUR
AU  - A. K. Ramazanov
TI  - Formulas for Rational Interpolation and Remainders
JO  - Matematičeskie zametki
PY  - 2014
SP  - 762
EP  - 772
VL  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a11/
LA  - ru
ID  - MZM_2014_96_5_a11
ER  - 
%0 Journal Article
%A A. K. Ramazanov
%T Formulas for Rational Interpolation and Remainders
%J Matematičeskie zametki
%D 2014
%P 762-772
%V 96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a11/
%G ru
%F MZM_2014_96_5_a11
A. K. Ramazanov. Formulas for Rational Interpolation and Remainders. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 762-772. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a11/

[1] U. Dzhouns, V. Tron, Nepreryvnye drobi. Analiticheskaya teoriya i prilozheniya, Mir, M., 1985 | MR

[2] T. N. Thiele, “Bemärkninger om periodiske Kjädebrökers Konvergens”, Zeuthen Tidsskr. (4), 3 (1879) | Zbl

[3] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade. Ch. 1. Osnovy teorii. Ch. 2. Obobscheniya i prilozheniya, Mir, M., 1986 | MR | Zbl

[4] G. Korn, T. Korn, Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. Opredeleniya, teoremy, formuly, Nauka, M., 1970

[5] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Grundlehren Math. Wiss., 13, Springer, Berlin, 1924 | Zbl

[6] V. K. Dzyadyk, L. I. Filozof, “O skorosti skhodimosti approksimatsii Pade dlya nekotorykh elementarnykh funktsii”, Matem. sb., 107:3 (1978), 347–363 | MR | Zbl

[7] Y. L. Luke, The Special Functions and Their Approximations, Math. Sci. Eng., 53, Academic Press, New York, London, 1969 | MR | MR | Zbl