Estimates of the Least Positive Root of the Sum of a Sine Series with Monotone Coefficients
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 747-761
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, the extremal problem of finding the infimum of the positive roots of the sum of a sine series with monotone coefficients for special subclasses of such series is solved.
Keywords:
sine series, trigonometric polynomial, roots of the sum of a series.
Mots-clés : Abel transformation
Mots-clés : Abel transformation
@article{MZM_2014_96_5_a10,
author = {A. Yu. Popov},
title = {Estimates of the {Least} {Positive} {Root} of the {Sum} of a {Sine} {Series} with {Monotone} {Coefficients}},
journal = {Matemati\v{c}eskie zametki},
pages = {747--761},
year = {2014},
volume = {96},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a10/}
}
A. Yu. Popov. Estimates of the Least Positive Root of the Sum of a Sine Series with Monotone Coefficients. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 747-761. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a10/
[1] P. Hartman, A. Wintner, “On sine series with monotone coefficients”, J. London Math. Soc., 28 (1953), 102–104 | DOI | MR | Zbl
[2] P. Hartman, A. Wintner, “On the behavior of Fourier sine transforms near the origin”, Proc. Amer. Math. Soc., 2 (1951), 398–400 | DOI | MR | Zbl
[3] R. P. Boas Jr., Integrability Theorems for Trigonometric Transforms, Ergeb. Math. Grenzgeb., 38, Springer-Verlag, Berlin, 1967 | MR | Zbl
[4] L. Vietoris, “Über das Vorzeichen gewisser trigonometricher Summen”, Österr. Acad. Wiss. Math.-Natur. Kl. S.-B. Abt. II, 167 (1958), 125–135 | Zbl
[5] A. S. Belov, “O primerakh trigonometricheskikh ryadov s neotritsatelnymi chastnymi summami”, Matem. sb., 186:4 (1995), 21–46 | MR | Zbl